Wednesday, March 31, 2021

Real Risk, Few Precautions (Revelation 6:12)

     By WILLIAM K. STEVENS

Published: October 24, 1989
AN EARTHQUAKE as powerful as the one that struck northern California last week could occur almost anywhere along the East Coast, experts say. And if it did, it would probably cause far more destruction than the West Coast quake.
The chances of such an occurrence are much less in the East than on the West Coast. Geologic stresses in the East build up only a hundredth to a thousandth as fast as in California, and this means that big Eastern quakes are far less frequent. Scientists do not really know what the interval between them might be, nor are the deeper-lying geologic faults that cause them as accessible to study. So seismologists are at a loss to predict when or where they will strike.
But they do know that a temblor with a magnitude estimated at 7 on the Richter scale – about the same magnitude as last week’s California quake – devastated Charleston, S.C., in 1886. And after more than a decade of study, they also know that geologic structures similar to those that caused the Charleston quake exist all along the Eastern Seaboard.
For this reason, ”we can’t preclude that a Charleston-sized earthquake might occur anywhere along the East Coast,” said David Russ, the assistant chief geologist of the United States Geological Survey in Reston, Va. ”It could occur in Washington. It could occur in New York.”
If that happens, many experts agree, the impact will probably be much greater than in California.Easterners, unlike Californians, have paid very little attention to making buildings and other structures earthquake-proof or earthquake-resistant. ”We don’t have that mentality here on the East Coast,” said Robert Silman, a New York structural engineer whose firm has worked on 3,800 buildings in the metropolitan area.
Moreover, buildings, highways, bridges, water and sewer systems and communications networks in the East are all older than in the West and consequently more vulnerable to damage. Even under normal conditions, for instance, water mains routinely rupture in New York City.
The result, said Dr. John Ebel, a geophysicist who is the assistant director of Boston College’s Weston Observatory, is that damage in the East would probably be more widespread, more people could be hurt and killed, depending on circumstances like time of day, and ”it would probably take a lot longer to get these cities back to useful operating levels.”
On top of this, scientists say, an earthquake in the East can shake an area 100 times larger than a quake of the same magnitude in California. This is because the earth’s crust is older, colder and more brittle in the East and tends to transmit seismic energy more efficiently. ”If you had a magnitude 7 earthquake and you put it halfway between New York City and Boston,” Dr. Ebel said, ”you would have the potential of doing damage in both places,” not to mention cities like Hartford and Providence.
Few studies have been done of Eastern cities’ vulnerability to earthquakes. But one, published last June in The Annals of the New York Academy of Sciences, calculated the effects on New York City of a magnitude 6 earthquake. That is one-tenth the magnitude of last week’s California quake, but about the same as the Whittier, Calif., quake two years ago.
The study found that such an earthquake centered 17 miles southeast of City Hall, off Rockaway Beach, would cause $11 billion in damage to buildings and start 130 fires. By comparison, preliminary estimates place the damage in last week’s California disaster at $4 billion to $10 billion. If the quake’s epicenter were 11 miles southeast of City Hall, the study found, there would be about $18 billion in damage; if 5 miles, about $25 billion.
No estimates on injuries or loss of life were made. But a magnitude 6 earthquake ”would probably be a disaster unparalleled in New York history,” wrote the authors of the study, Charles Scawthorn and Stephen K. Harris of EQE Engineering in San Francisco.
The study was financed by the National Center for Earthquake Engineering Research at the State University of New York at Buffalo. The research and education center, supported by the National Science Foundation and New York State, was established in 1986 to help reduce damage and loss of life from earthquakes.
The study’s postulated epicenter of 17 miles southeast of City Hall was the location of the strongest quake to strike New York since it has been settled, a magnitude 5 temblor on Aug. 10, 1884. That 1884 quake rattled bottles and crockery in Manhattan and frightened New Yorkers, but caused little damage. Seismologists say a quake of that order is likely to occur within 50 miles of New York City every 300 years. Quakes of magnitude 5 are not rare in the East. The major earthquake zone in the eastern half of the country is the central Mississippi Valley, where a huge underground rift causes frequent geologic dislocations and small temblors. The most powerful quake ever known to strike the United States occurred at New Madrid, Mo., in 1812. It was later estimated at magnitude 8.7 and was one of three quakes to strike that area in 1811-12, all of them stronger than magnitude 8. They were felt as far away as Washington, where they rattled chandeliers, Boston and Quebec.
Because the New Madrid rift is so active, it has been well studied, and scientists have been able to come up with predictions for the central Mississippi valley, which includes St. Louis and Memphis. According to Dr. Russ, there is a 40 to 63 percent chance that a quake of magnitude 6 will strike that area between now and the year 2000, and an 86 to 97 percent chance that it will do so by 2035. The Federal geologists say there is a 1 percent chance or less of a quake greater than magnitude 7 by 2000, and a 4 percent chance or less by 2035.
Elsewhere in the East, scientists are limited in their knowledge of probabilities partly because faults that could cause big earthquakes are buried deeper in the earth’s crust. In contrast to California, where the boundary between two major tectonic plates creates the San Andreas and related faults, the eastern United States lies in the middle of a major tectonic plate. Its faults are far less obvious, their activity far more subtle, and their slippage far slower. 
Any large earthquake would be ”vastly more serious” in the older cities of the East than in California,  said Dr. Tsu T. Soong, a professor of civil engineering at the State University of New York at Buffalo who is a researcher in earthquake-mitigation technology at the National Center for Earthquake Engineering Research. First, he said, many buildings are simply older, and therefore weaker and more  vulnerable to collapse. Second, there is no seismic construction code in most of the East as there is in California, where such codes have been in place for decades.
The vulnerability is evident in many ways. ”I’m sitting here looking out my window,” said Mr. Silman, the structural engineer in New York, ”and I see a bunch of water tanks all over the place” on rooftops. ”They are not anchored down at all, and it’s very possible they would fall in an earthquake.”
 Many brownstones, he said, constructed as they are of unreinforced masonry walls with wood joists between, ”would just go like a house of cards.” Unreinforced masonry, in fact, is the single most vulnerable structure, engineers say. Such buildings are abundant, even predominant, in many older cities. The Scawthorn-Harris study reviewed inventories of all buildings in Manhattan as of 1972 and found that 28,884, or more than half, were built of unreinforced masonry. Of those, 23,064 were three to five stories high.
Buildings of reinforced masonry, reinforced concrete and steel would hold up much better, engineers say, and wooden structures are considered intrinsically tough in ordinary circumstances. The best performers, they say, would probably be skyscrapers built in the last 20 years. As Mr. Silman explained, they have been built to withstand high winds, and the same structural features that enable them to do so also help them resist an earthquake’s force. But even these new towers have not been provided with the seismic protections required in California and so are more vulnerable than similar structures on the West Coast.
Buildings in New York are not generally constructed with such seismic protections as base-isolated structures, in which the building is allowed to shift with the ground movement; or with flexible frames that absorb and distribute energy through columns and beams so that floors can flex from side to side, or with reinforced frames that help resist distortion.
”If you’re trying to make a building ductile – able to absorb energy – we’re not geared to think that way,” said Mr. Silman.
New York buildings also contain a lot of decorative stonework, which can be dislodged and turned into lethal missiles by an earthquake. In California, building codes strictly regulate such architectural details.
Manhattan does, however, have at least one mitigating factor: ”We are blessed with this bedrock island,” said Mr. Silman. ”That should work to our benefit; we don’t have shifting soils. But there are plenty of places that are problem areas, particularly the shoreline areas,” where landfills make the ground soft and unstable.
As scientists have learned more about geologic faults in the Northeast, the nation’s uniform building code – the basic, minimum code followed throughout the country – has been revised accordingly. Until recently, the code required newly constructed buildings in New York City to withstand at least 19 percent of the side-to-side seismic force that a comparable building in the seismically active areas of California must handle. Now the threshold has been raised to 25 percent.
New York City, for the first time, is moving to adopt seismic standards as part of its own building code. Local and state building codes can and do go beyond the national code. Charles M. Smith Jr., the city Building Commissioner, last spring formed a committee of scientists, engineers, architects and government officials to recommend the changes.
”They all agree that New York City should anticipate an earthquake,” Mr. Smith said. As to how big an earthquake, ”I don’t think anybody would bet on a magnitude greater than 6.5,” he said. ”I don’t know,” he added, ”that our committee will go so far as to acknowledge” the damage levels in the Scawthorn-Harris study, characterizing it as ”not without controversy.”
For the most part, neither New York nor any other Eastern city has done a detailed survey of just how individual buildings and other structures would be affected, and how or whether to modify them.
”The thing I think is needed in the East is a program to investigate all the bridges” to see how they would stand up to various magnitudes of earthquake,” said Bill Geyer, the executive vice president of the New York engineering firm of Steinman, Boynton, Gronquist and Birdsall, which is rehabilitating the cable on the Williamsburg Bridge. ”No one has gone through and done any analysis of the existing bridges.”
In general, he said, the large suspension bridges, by their nature, ”are not susceptible to the magnitude of earthquake you’d expect in the East.” But the approaches and side spans of some of them might be, he said, and only a bridge-by-bridge analysis would tell. Nor, experts say, are some elevated highways in New York designed with the flexibility and ability to accommodate motion that would enable them to withstand a big temblor.
Tunnels Vulnerable
The underground tunnels that carry travelers under the rivers into Manhattan, those that contain the subways and those that carry water, sewers and natural gas would all be vulnerable to rupture, engineers say. The Lincoln, Holland, PATH and Amtrak tunnels, for instance, go from bedrock in Manhattan to soft soil under the Hudson River to bedrock again in New Jersey, said Mark Carter, a partner in Raamot Associates, geotechnical engineers specializing in soils and foundations.
Likewise, he said, subway tunnels between Manhattan and Queens go from hard rock to soft soil to hard rock on Roosevelt Island, to soft soil again and back to rock. The boundaries between soft soil and rock are points of weakness, he said.
”These structures are old,” he said, ”and as far as I know they have not been designed for earthquake loadings.”
Even if it is possible to survey all major buildings and facilities to determine what corrections can be made, cities like New York would then face a major decision: Is it worth spending the money to modify buildings and other structures to cope with a quake that might or might not come in 100, or 200 300 years or more?
”That is a classical problem” in risk-benefit analysis, said Dr. George Lee, the acting director of the Earthquake Engineering Research Center in Buffalo. As more is learned about Eastern earthquakes, he said, it should become ”possible to talk about decision-making.” But for now, he said, ”I think it’s premature for us to consider that question.”

Antichrist’s commander killed in clash with ISIS

PMF commander killed in clash with ISIS

A+ A-

ERBIL, Kurdistan Region — A commander of the state-sponsored Popular Mobilization Forces (PMF, Hashd al-Shaabi in Arabic) was killed in a clash with Islamic State (ISIS) militants in Iraq’s Salahaddin province, the PMF said on Monday.

Hassan Muhammad al-Asadi, commander of a regiment in Brigade 314, and a fighter from Brigade 315 were killed on Monday during clashes with ISIS militants southwest of Samarra, the PMF said in a statement shared on its official Telegram channels.

Brigades 314 and 315 belong to Saraya al-Salam, a militia linked to Shiite cleric Muqtada al-Sadr.

ISIS has attacked PMF forces several times this year – particularly in territories disputed by Erbil and Baghdad, where ISIS sleeper cells thrive.

On February 28, six members of Iraq’s state-sponsored Popular Mobilization Forces (PMF, Hashd al-Shaabi in Arabic) were killed and two others wounded in a car explosion in Anbar province, western Iraq.

On February 2, five members of the PMF were killed in a clash with ISIS militants in Diyala, according to state media and the PMF. At least 11 fighters from the PMF were killed in an ambush by ISIS in Salahaddin on January 24.

ISIS claimed in its weekly propaganda newspaper al-Naba, last published on Thursday, that it had conducted 17 operations in Iraq from March 17 to 23, killing and injuring 31 people, including PMF fighters.

The PMF took part of the territorial defeat of ISIS in Iraq in late 2017, but it’s role in Iraq has increasingly been called into question.

PMF units close to Iran are widely accused of abducting and killing opponents, and are believed to be responsible for some of the deadly rocket attacks targeting US and coalition personnel stationed at bases across Iraq.

The Potent Russian nuclear triad: Daniel 7

Watch 3 Russian Nuclear Submarines Smash Through Arctic Ice at Once

It’s a show of force with a loud message: the subs can fire their missiles from places U.S. forces can’t reach.

By Kyle Mizokami MAR 30, 2021

Three Russian missile submarines carrying up to 200 nuclear weapons surfaced in the Arctic Ocean last week, demonstrating their ability to conduct their nuclear mission in emergencies.

The submarines, part of Moscow’s nuclear deterrent force, forced their way through ice that’s several feet thick. In wartime, the subs would hide under the ice from NATO anti-submarine forces.

The exercise took place near Franz Josef Land, an island archipelago off the coast of Russia in the Arctic Ocean. The islands are just 625 miles south of the North Pole. In March, the temperatures hover between an average of 8 and 18 degrees Fahrenheit and the sea is covered with a thick layer of ice.

On March 20, the three ballistic missile submarines—two Delta IV subs and one Borei-class sub, per The Barents Observersurfaced off the coast of the archipelago, using their sails to break through the thick ice crust. The submarines surfaced within a radius of 300 meters, demonstrating their ability to navigate with precision even under polar ice. 

The ice appears to differ in thickness. Some of the ice appears approximately 1 foot thick, while one Delta-class submarine, with its sail-mounted diving planes pivoted upward, looks like it surfaced in 3 feet of ice.

The Delta IV submarines, built during the Cold War, are 548 feet long and are each equipped with 16 Sineva submarine-launched ballistic missiles. The newer Borei-class sub, meanwhile, is 525 feet long and carries 16 Bulava ballistic missiles. 

russia submarine
The sail of one Delta IV submarine, with hydroplanes rotated upward to assist breaking through the ice.

RUSSIAN MINISTRY OF DEFENSE

Each of the 32 Sineva missiles carries four 100-kiloton warheads, for a total of 128 warheads and up to 12.8 megatons of nuclear firepower. The 16 Bulava missiles aboard the Borei pack a theoretical total of 160 warheads, for up to 16 megatons of firepower. That’s a possible total of 28.8 megatons, or 28,800 kilotons. (By comparison, the Hiroshima explosion was about 16 kilotons.)

The real number of warheads aboard the three subs is unknown, but it’s likely about 10 percent less, with the balance made up of reentry vehicle decoys or penetration aids like jammers or radar-obscuring chaff to confuse enemy missile defenses.

The three submarines are part of Russia’s sea-based nuclear deterrent, complementing its cruise missile-armed bomber force and land-based missiles. Unlike American submarines, Russia’s missile subs are meant to operate close to the homeland. The sub fleets operate in “bastions” in the Barents Sea and Sea of Okhotsk, where they can be protected by land-based anti-submarine warfare aircraft and helicopters, and warships at sea.

uss connecticut submariners
The Seawolf-class attack submarine USS Connecticut, Naval Base Kitsap-Bremerton, May 2018.

SMITH COLLECTION/GADOGETTY IMAGES

The ultimate bastion for Russian submarines is in the far north, under the pack ice. There, the ice forms a protective layer against NATO ships and aircraft hunting the submarines. But Russian subs operating under the ice, while relatively safe, still face one formidable opponent: the U.S. Navy’s three Seawolf-class nuclear powered attack submarines. 

The three subs—Seawolf, Connecticut, and Jimmy Carter—were all explicitly designed to operate under the ice and hunt missile firing submarines.

The Russian Navy exercise is similar to the Anglo-American ICEX 2018 exercise, when the U.S. submarines USS Hamptonand USS Hartford and Royal Navy submarine HMS Trenchant surfaced together in the Arctic. 

Pestilence Continues to Plague Us: Revelation 6

 

CDC director warns of “impending doom” as COVID cases increase – Axios

Marisa Fernandez

Centers for Disease Control and Prevention Director Rochelle Walensky went off script at a briefing Monday and made an emotional plea to Americans not to let up on public health measures amid fears of a fourth wave.

What they’re saying: “I’m going to reflect on the recurring feeling I have of impending doom,” Walensky said, appearing to hold back tears. “We do not have the luxury of inaction. For the health of our country, we must work together now to prevent a fourth surge.”

Driving the news: The White House coronavirus response team is seeking to confront the current dichotomy in the U.S., in which immense optimism from the speed of the vaccine rollout must be balanced with continued restraint in moving forward with normalcy.

• “The thing that’s different this time is we actually have it in our power to be done with this scale of vaccination and that will be so much slower if we have another surge to deal with as well,” Walensky said.

• “I’m speaking today not necessarily as your CDC director, but as a wife, as a mother, as a daughter to ask you to just please hold on a little while longer. I so badly want to be done. I know you all so badly want to be done. We are just almost there, but not quite yet.”

The big picture: Coronavirus cases are rapidly rising in places including Michigan, New York, New Jersey and other Northeastern states, partially a result of variants of the virus becoming more widespread, experts say. An uptick in travel and states loosening restrictions are also factors.

• The 7-day daily average of new cases increased 10.6% from the previous week to 59,773, while the 7-day daily average of deaths increased 2.6% to 968.

• Even though a remarkable 72% of Americans 65 and older have received at least one dose of the vaccine, millions of Americans — particularly younger Americans with underlying conditions — remain vulnerable.

What to watch: Walensky said she is speaking with governors tomorrow to address the rise in cases.

• “We’re essentially pleading with people even though we have an urge particularly with the warm weather to just cut loose,” NIAID director Anthony Fauci said.

• “We’ve just got to hang in there a bit longer,” he said. “I think the reason we’re seeing this plateauing and the increase that I hope doesn’t turn into a surge is because we are really doing things prematurely right now with regard to opening up.”

Tuesday, March 30, 2021

Columbia University Warns Of Sixth Seal (Revelation 6:12)

 



A study by a group of prominent seismologists suggests that a pattern of subtle but active faults makes the risk of earthquakes to the New York City area substantially greater than formerly believed. Among other things, they say that the controversial Indian Point nuclear power plants, 24 miles north of the city, sit astride the previously unidentified intersection of two active seismic zones. The paper appears in the current issue of the Bulletin of the Seismological Society of America.
Many faults and a few mostly modest quakes have long been known around New York City, but the research casts them in a new light. The scientists say the insight comes from sophisticated analysis of past quakes, plus 34 years of new data on tremors, most of them perceptible only by modern seismic instruments. The evidence charts unseen but potentially powerful structures whose layout and dynamics are only now coming clearer, say the scientists. All are based at Columbia University’s Lamont-Doherty Earth Observatory, which runs the network of seismometers that monitors most of the northeastern United States.
Lead author Lynn R. Sykes said the data show that large quakes are infrequent around New York compared to more active areas like California and Japan, but that the risk is high, because of the overwhelming concentration of people and infrastructure. “The research raises the perception both of how common these events are, and, specifically, where they may occur,” he said. “It’s an extremely populated area with very large assets.” Sykes, who has studied the region for four decades, is known for his early role in establishing the global theory of plate tectonics.
The authors compiled a catalog of all 383 known earthquakes from 1677 to 2007 in a 15,000-square-mile area around New York City. Coauthor John Armbruster estimated sizes and locations of dozens of events before 1930 by combing newspaper accounts and other records. The researchers say magnitude 5 quakes—strong enough to cause damage–occurred in 1737, 1783 and 1884. There was little settlement around to be hurt by the first two quakes, whose locations are vague due to a lack of good accounts; but the last, thought to be centered under the seabed somewhere between Brooklyn and Sandy Hook, toppled chimneys across the city and New Jersey, and panicked bathers at Coney Island. Based on this, the researchers say such quakes should be routinely expected, on average, about every 100 years. “Today, with so many more buildings and people, a magnitude 5 centered below the city would be extremely attention-getting,” said Armbruster. “We’d see billions in damage, with some brick buildings falling. People would probably be killed.”
Starting in the early 1970s Lamont began collecting data on quakes from dozens of newly deployed seismometers; these have revealed further potential, including distinct zones where earthquakes concentrate, and where larger ones could come. The Lamont network, now led by coauthor Won-Young Kim, has located hundreds of small events, including a magnitude 3 every few years, which can be felt by people at the surface, but is unlikely to cause damage. These small quakes tend to cluster along a series of small, old faults in harder rocks across the region. Many of the faults were discovered decades ago when subways, water tunnels and other excavations intersected them, but conventional wisdom said they were inactive remnants of continental collisions and rifting hundreds of millions of years ago. The results clearly show that they are active, and quite capable of generating damaging quakes, said Sykes.
One major previously known feature, the Ramapo Seismic Zone, runs from eastern Pennsylvania to the mid-Hudson Valley, passing within a mile or two northwest of Indian Point. The researchers found that this system is not so much a single fracture as a braid of smaller ones, where quakes emanate from a set of still ill-defined faults. East and south of the Ramapo zone—and possibly more significant in terms of hazard–is a set of nearly parallel northwest-southeast faults. These include Manhattan’s 125th Street fault, which seems to have generated two small 1981 quakes, and could have been the source of the big 1737 quake; the Dyckman Street fault, which carried a magnitude 2 in 1989; the Mosholu Parkway fault; and the Dobbs Ferry fault in suburban Westchester, which generated the largest recent shock, a surprising magnitude 4.1, in 1985. Fortunately, it did no damage. Given the pattern, Sykes says the big 1884 quake may have hit on a yet-undetected member of this parallel family further south.
The researchers say that frequent small quakes occur in predictable ratios to larger ones, and so can be used to project a rough time scale for damaging events. Based on the lengths of the faults, the detected tremors, and calculations of how stresses build in the crust, the researchers say that magnitude 6 quakes, or even 7—respectively 10 and 100 times bigger than magnitude 5–are quite possible on the active faults they describe. They calculate that magnitude 6 quakes take place in the area about every 670 years, and sevens, every 3,400 years. The corresponding probabilities of occurrence in any 50-year period would be 7% and 1.5%. After less specific hints of these possibilities appeared in previous research, a 2003 analysis by The New York City Area Consortium for Earthquake Loss Mitigation put the cost of quakes this size in the metro New York area at $39 billion to $197 billion. A separate 2001 analysis for northern New Jersey’s Bergen County estimates that a magnitude 7 would destroy 14,000 buildings and damage 180,000 in that area alone. The researchers point out that no one knows when the last such events occurred, and say no one can predict when they next might come.
“We need to step backward from the simple old model, where you worry about one large, obvious fault, like they do in California,” said coauthor Leonardo Seeber. “The problem here comes from many subtle faults. We now see there is earthquake activity on them. Each one is small, but when you add them up, they are probably more dangerous than we thought. We need to take a very close look.” Seeber says that because the faults are mostly invisible at the surface and move infrequently, a big quake could easily hit one not yet identified. “The probability is not zero, and the damage could be great,” he said. “It could be like something out of a Greek myth.”
The researchers found concrete evidence for one significant previously unknown structure: an active seismic zone running at least 25 miles from Stamford, Conn., to the Hudson Valley town of Peekskill, N.Y., where it passes less than a mile north of the Indian Point nuclear power plant. The Stamford-Peekskill line stands out sharply on the researchers’ earthquake map, with small events clustered along its length, and to its immediate southwest. Just to the north, there are no quakes, indicating that it represents some kind of underground boundary. It is parallel to the other faults beginning at 125th Street, so the researchers believe it is a fault in the same family. Like the others, they say it is probably capable of producing at least a magnitude 6 quake. Furthermore, a mile or so on, it intersects the Ramapo seismic zone.
Sykes said the existence of the Stamford-Peekskill line had been suggested before, because the Hudson takes a sudden unexplained bend just ot the north of Indian Point, and definite traces of an old fault can be along the north side of the bend. The seismic evidence confirms it, he said. “Indian Point is situated at the intersection of the two most striking linear features marking the seismicity and also in the midst of a large population that is at risk in case of an accident,” says the paper. “This is clearly one of the least favorable sites in our study area from an earthquake hazard and risk perspective.”
The findings comes at a time when Entergy, the owner of Indian Point, is trying to relicense the two operating plants for an additional 20 years—a move being fought by surrounding communities and the New York State Attorney General. Last fall the attorney general, alerted to the then-unpublished Lamont data, told a Nuclear Regulatory Commission panel in a filing: “New data developed in the last 20 years disclose a substantially higher likelihood of significant earthquake activity in the vicinity of [Indian Point] that could exceed the earthquake design for the facility.” The state alleges that Entergy has not presented new data on earthquakes past 1979. However, in a little-noticed decision this July 31, the panel rejected the argument on procedural grounds. A source at the attorney general’s office said the state is considering its options.
The characteristics of New York’s geology and human footprint may increase the problem. Unlike in California, many New York quakes occur near the surface—in the upper mile or so—and they occur not in the broken-up, more malleable formations common where quakes are frequent, but rather in the extremely hard, rigid rocks underlying Manhattan and much of the lower Hudson Valley. Such rocks can build large stresses, then suddenly and efficiently transmit energy over long distances. “It’s like putting a hard rock in a vise,” said Seeber. “Nothing happens for a while. Then it goes with a bang.” Earthquake-resistant building codes were not introduced to New York City until 1995, and are not in effect at all in many other communities. Sinuous skyscrapers and bridges might get by with minimal damage, said Sykes, but many older, unreinforced three- to six-story brick buildings could crumble.
Art Lerner-Lam, associate director of Lamont for seismology, geology and tectonophysics, pointed out that the region’s major highways including the New York State Thruway, commuter and long-distance rail lines, and the main gas, oil and power transmission lines all cross the parallel active faults, making them particularly vulnerable to being cut. Lerner-Lam, who was not involved in the research, said that the identification of the seismic line near Indian Point “is a major substantiation of a feature that bears on the long-term earthquake risk of the northeastern United States.” He called for policymakers to develop more information on the region’s vulnerability, to take a closer look at land use and development, and to make investments to strengthen critical infrastructure.
“This is a landmark study in many ways,” said Lerner-Lam. “It gives us the best possible evidence that we have an earthquake hazard here that should be a factor in any planning decision. It crystallizes the argument that this hazard is not random. There is a structure to the location and timing of the earthquakes. This enables us to contemplate risk in an entirely different way. And since we are able to do that, we should be required to do that.”
New York Earthquake Briefs and Quotes:
Existing U.S. Geological Survey seismic hazard maps show New York City as facing more hazard than many other eastern U.S. areas. Three areas are somewhat more active—northernmost New York State, New Hampshire and South Carolina—but they have much lower populations and fewer structures. The wider forces at work include pressure exerted from continuing expansion of the mid-Atlantic Ridge thousands of miles to the east; slow westward migration of the North American continent; and the area’s intricate labyrinth of old faults, sutures and zones of weakness caused by past collisions and rifting.
Due to New York’s past history, population density and fragile, interdependent infrastructure, a 2001 analysis by the Federal Emergency Management Agency ranks it the 11th most at-risk U.S. city for earthquake damage. Among those ahead: Los Angeles, San Francisco, Seattle and Portland. Behind: Salt Lake City, Sacramento, Anchorage.
New York’s first seismic station was set up at Fordham University in the 1920s. Lamont-Doherty Earth Observatory, in Palisades, N.Y., has operated stations since 1949, and now coordinates a network of about 40.
Dozens of small quakes have been felt in the New York area. A Jan. 17, 2001 magnitude 2.4, centered in the Upper East Side—the first ever detected in Manhattan itself–may have originated on the 125th Street fault. Some people thought it was an explosion, but no one was harmed.
The most recent felt quake, a magnitude 2.1 on July 28, 2008, was centered near Milford, N.J. Houses shook and a woman at St. Edward’s Church said she felt the building rise up under her feet—but no damage was done.
Questions about the seismic safety of the Indian Point nuclear power plant, which lies amid a metropolitan area of more than 20 million people, were raised in previous scientific papers in 1978 and 1985.
Because the hard rocks under much of New York can build up a lot strain before breaking, researchers believe that modest faults as short as 1 to 10 kilometers can cause magnitude 5 or 6 quakes.
In general, magnitude 3 quakes occur about 10 times more often than magnitude fours; 100 times more than magnitude fives; and so on. This principle is called the Gutenberg-Richter relationship.

The British Nuclear Horn Joins the US-China Fray: Daniel 7

Nuclear Weapons Blazing: Britain Enters the US-China Fray

Ramzy Baroud 29 Mar 2021

Boris Johnson’s March 16 speech before the British Parliament was reminiscent, at least in tone, to that of Chinese President Xi Jinping in October 2019, on the 70th anniversary of the founding of the Republic of China.

The comparison is quite apt if we remember the long-anticipated shift in Britain’s foreign policy and Johnson’s conservative Government’s pressing need to chart a new global course in search for new allies – and new enemies. 

Xi’s words in 2019 signaled a new era in Chinese foreign policy, where Beijing hoped to send a message to its allies and enemies that the rules of the game were finally changing in its favor, and that China’s economic miracle – launched under the leadership of Deng Xiaoping in 1992 – would no longer be confined to the realm of wealth accumulation, but would exceed this to politics and military strength, as well.

In China’s case, Xi’s declarations were not a shift per se, but rather a rational progression. However, in the case of Britain, the process, though ultimately rational, is hardly straightforward. After officially leaving the European Union in January 2020, Britain was expected to articulate a new national agenda. This articulation, however, was derailed by the COVID-19 pandemic and the multiple crises it generated. 

Several scenarios, regarding the nature of Britain’s new agenda, were plausible:

One, that Britain maintains a degree of political proximity to the EU, thus avoiding more negative repercussions of Brexit;

Two, for Britain to return to its former alliance with the US, begun in earnest in the post-World War II era and the formation of NATO and reaching its zenith in the run up to the Iraq invasion in 2003; 

Finally, for Britain to play the role of the mediator, standing at an equal distance among all parties, so that it may reap the benefits of its unique position as a strong country with a massive global network.

A government’s report, “Global Britain in a Competitive Age”, released on March 16, and Johnson’s  subsequent speech, indicate that Britain has chosen the second option.

The report clearly prioritizes the British-American alliance above all others, stating that “The United States will remain the UK’s most important strategic ally and partner”, and underscoring Britain’s need to place greater focus on the ‘Indo-Pacific’ region, calling it “the centre of intensifying geopolitical competition”.

Therefore, unsurprisingly, Britain is now set to dispatch a military carrier to the South China Sea, and is preparing to expand its nuclear arsenal from 180 to 260 warheads, in obvious violation of the Non-Proliferation Treaty (NPT). The latter move can be directly attributed to Britain’s new political realignment which roughly follows the maxim of ‘the enemy of my friend is my enemy’. 

The government’s report places particular emphasis on China, warning against its increased “international assertiveness” and “growing importance in the Indo-Pacific”. Furthermore, it calls for greater investment in enhancing “China-facing capabilities” and responding to “the systematic challenge” that China “poses to our security”.

How additional nuclear warheads will allow Britain to achieve its above objectives remains uncertain. Compared with Russia and the US, Britain’s nuclear arsenal, although duly destructive, is negligible in terms of its overall size. However, as history has taught us, nuclear weapons are rarely manufactured to be used in war – with the single exception of Hiroshima and Nagasaki. The number of nuclear warheads and the precise position of their operational deployment are usually meant to send a message, not merely that of strength or resolve, but also to delineate where a specific country stands in terms of its alliances.

The US-Soviet Cold War, for example, was expressed largely through a relentless arms race, with nuclear weapons playing a central role in that polarizing conflict, which divided the world into two major ideological-political camps.

Now that China is likely to claim the superpower status enjoyed by the Soviets until the early 1990s, a new Great Game and Cold War can be felt, not only in the Asia Pacific region, but as far away as Africa and South America. While Europe continues to hedge its bets in this new global conflict – reassured by the size of its members’ collective economies – Britain, thanks to Brexit, no longer has that leverage. No longer an EU member, Britain is now keen to protect its global interests through a direct commitment to US interests. Now that China has been designated as America’s new enemy, Britain must play along.

While much media coverage has been dedicated to the expansion of Britain’s nuclear arsenal, little attention has been paid to the fact that the British move is a mere step in a larger political scheme, which ultimately aims at executing a British tilt to Asia, similar to the US ‘pivot to Asia’, declared by the Barack Obama Administration nearly a decade ago. 

The British foreign policy shift is an unprecedented gamble for London, as the nature of the new Cold War is fundamentally different from the previous one; this time around, the ‘West’ is divided, torn by politics and crises, while NATO is no longer the superpower it once was. 

Now that Britain has made its position clear, the ball is in the Chinese court, and the new Great Game is, indeed, afoot. 

—Ramzy Baroud is a journalist and the Editor of The Palestine Chronicle. He is the author of five books. His latest is “These Chains Will Be Broken: Palestinian Stories of Struggle and Defiance in Israeli Prisons” (Clarity Press). Dr. Baroud is a Non-resident Senior Research Fellow at the Center for Islam and Global Affairs (CIGA) and also at the Afro-Middle East Center (AMEC). His website is http://www.ramzybaroud.net

Israel forces detain 3 more Hamas leaders outside the Temple Walls: Revelation 11

Israel forces detain 3 more Hamas leaders in West Bank

MENAFN

(MENAFN) Palestinian sources close to Hamas said that on Friday, Mar. 26 Israeli military detained in the West Bank another three leaders of Hamas, ruling party of Gaza.

The Israeli forces detained the three Hamas leaders, Hatem Qafisha, Eisa al-Jabari and Mazen al-Natsheh, from their houses in the southern West Bank city of Hebron, said the resources to Xinhua.

The Israeli military detained two Hamas leaders in the West Bank, stated on Wednesday the Palestinian Prisoners’ Club, a non-governmental organization which was founded in 1993 to help political detainees in Israeli jails.

The report noted that the two senior Hamas leaders, Jamal al-Taweel and Bajes Nakhla, were detained from their houses close to Ramallah in the West Bank.

Protesters outside the Temple Walls demand release of Hamas officials: Revelation 11

Gaza protesters demand release of Hamas officials from Saudi jails

Sunday, 28 March 2021 10:30 AM  [ Last Update: Sunday, 28 March 2021 10:37 AM ]

Hundreds of Palestinians have staged a protest in the Israeli-blockaded Gaza Strip, urging Saudi Arabia to release two officials from the Hamas resistance movement who are imprisoned in the kingdom.

The demonstration took place on Saturday, with the participants chanting slogans against Saudi King Salman bin Abdulaziz Al Saud and Crown Prince Mohammed bin Salman, al-Quds al-Arabi newspaper reported.

They called on the Riyadh regime to release Muhammad al-Khudari, 83, and his son Hani, who are being kept behind bars in Saudi Arabia over the past three years.

Abdul Majid al-Khudari, a brother of the elderly inmate, told reporters during the protest that his family had repeatedly sent messages to Saudi officials demanding the detainees’ immediate release, but it had received no response.

“Today, we gathered here to tell the world that there is a human being (Muhammad al-Khudari) who was subjected to oppression and is now in a Saudi prison. He is suffering from cancer,” he said, noting that his brother’s presence in Saudi Arabia was legal and coordinated with the kingdom.

Al-Khudari and his son were arbitrarily arrested on April 4, 2019 and remained in detention without charge for almost one year. The father was undergoing cancer treatment when he was taken into custody.

Both men were forcibly disappeared for one month after their arrest, and held incommunicado and in solitary confinement for the next two months of their detention.

According to Amnesty International, “the two men were interrogated behind closed doors without the presence or participation of their lawyers, and their treatment and conditions of detention have caused them major stress and psychological pressure, especially Dr. Muhammad al-Khudari, as denying him access to adequate medical care led to worsening his health condition”.

“These conducts violate the prohibition of torture and other forms of ill-treatment.”

On March 8, 2020, they were charged before the Saudi Supreme Court with “joining a terrorist group,” as part of a collective trial of 68 Hamas members.

The trial “was marred by numerous and serious violations of their rights in the due process, including enforced disappearance, arbitrary arrest and detention and solitary confinement,” according to Amnesty International.

Israel arrests 3 Hamas leaders ahead of elections

On Friday, Israeli forces arrested three prominent Hamas leaders, Hatem Qafisha, Issa al-Jabari and Mazen al-Natsheh, in the West Bank city of al-Khalil (Hebron).

The arrests come as Palestinian political factions are preparing for legislative elections on May 22, in which Hamas is expected to win a majority of seats in the Parliament.

Earlier this week, Israeli forces released two Hamas members after detaining them for interrogation from the Jalazone refugee camp north of Ramallah, and arrested five former Hamas prisoners.

In early March, Israeli media reported that the regime’s spy agency Shin Bet had contacted Hamas members and supporters in the occupied West Bank and warned them against running in the upcoming polls.

According to Palestinian prisoners’ rights group Addameer, a total of 4,400 Palestinians, including women and children, are currently held in Israeli detention facilities.

They experience numerous rights violations, including torture, repression, assault and the denial of proper medical treatment.

The regime in Tel Aviv has an infamous “administrative detention” system, under which it imprisons Palestinians without trial or charge, with some prisoners being held in administrative detention for up to 11 years.

Press TV’s website can also be accessed at the following alternate addresses:

Hybrid Warfare Leading to the First Nuclear War: Revelation 8

Hybrid Warfare: A New Face Of Conflict n South Asia – OpEd

Amber Afreen Abid*March 29, 2021

Hybrid warfare or hybrid threat seems to be the emerging modality in the changing nature of warfare.  In the nuclear era, more attention has been given to the sub-conventional conflicts, because of the lethality of the nuclear weapons; the deterrence being created by the nuclear weapon states prevents other nuclear weapon states to wage a total war, and international legal bindings of prohibiting the use of nuclear weapons against non nuclear weapon states eliminates the probability of an all out war. Thus, the thrust of war has been envisioned by revisionist actors in the form of a new kind of warfare, predominantly through cyber-attacks and subversion, fake news campaign, sponsoring of proxy forces, or even through economic blackmail.

Hybrid warfare is a challenge, which brings into play an array of tactics and strategies thereby inflicting harm to the adversary, whilst exploiting the revolution in technological affairs. It targets the vulnerabilities of any society, with the aim to divide and dissuade the population, undermines the key institutions, and even deteriorates the bond between the states and international organizations. In a nutshell, hybrid warfare is a full-spectrum of war, which encompasses both physical and psychological aspects of the adversary.

Pakistan has also been the victim of hybrid warfare. Since inception, India has been trying to wage a war or indulge into a conflict with Pakistan, in one way or the other. India is sparing no effort in targeting the domestic fault lines of Pakistan, which encompasses all the political, social, economic and religious factors. They are leaving no stone unturned in defaming and maligning Pakistan in the international arena through its fake propaganda. Pakistani society is an amalgam of ethnic groups, sectarian faction, and cultural blocs, which is being exploited by India and is used as a fault line as a grey-zone in conflict. India is operating radicalized militant group in Pakistan and is supporting the dissidents in Baluchistan. Moreover, Afghanistan’s land is being exercised by India in its endeavor to destabilize Pakistan by operating terrorists’ organizations for launching sub-conventional warfare inside Pakistan.

Considering the spillover of untrue and fallacious information, the complexity of warfare has tremendously being increased. India is involved in various operations against Pakistan in order to defame and discredit the country, in its pursuit to isolate it internationally as well. Its conspiracy of defaming and maligning Pakistan has also been put out in the EU DisinfoLab Report. According to that report, India is operating the largest ever fake media network, with 750+ fake media websites, and resurrecting the dead scholars and propagating the false news in the international media.

Moreover, it supported the objectives of right-wing politicians in attaining their objectives, in propaganda to support the minority rights and women related issues. Moreover India is also keenly involved in terrorists and separatists activities, and trying its level best to sabotage the economic project of Pakistan- the China-Pakistan Economic Corridor (CPEC), which certainly is a headache to the adversary. India is using a variety of subversive tactics of hybrid warfare, in order to destabilize Pakistan both externally and internally. Pakistan has encountered many security challenges successfully, but has been prone to the non-traditional security challenge-the hybrid warfare, waged by India. Thereof, in the contemporary state of affairs, it is imperative for Pakistan to identify and efficiently counter the gradually escalating non-traditional threat.

There is a need to pen down a grand strategy for countering all the traditional and non-traditional threats posed by the adversary. Pakistan needs to devise a comprehensive strategy to counter the aggression of hybrid warfare. Pakistan will develop Hybrid Warfare and Stratagem Centre (HWSC), with its aim to address policy makers of the threats posed by the hybrid warfare, to make them susceptible of the threats and awareness for curbing them in the future. Moreover, the system to share the sensitive information should be devised in order to spread the information through all the major civil and military institutions of the country.

Moreover, media has to play a vital role in curbing the fake news propaganda and misinformation, as it is the most important tool used in propagating bogus information; besides, the media should strictly promote Pakistan’s narrative in fighting against the prevalent threat. Additionally, the law enforcement agencies should work in coordination with each other and should be properly trained and equipped to fight against this abstract threat, additionally, they should be able enough to smartly utilize Artificial Intelligence as well.

It is imperative for the government to provide awareness and vigilance to the local population of the country, in order to make them aware of the actions and ill-will of the adversary in its attempt to dissect the society, as the objective is to target the common people. Hence, the cautious and observant society is the first and foremost step in the line of defense against this new challenge, and the entire country needs to play the role in curbing the spiteful act of the foe.

*Amber Afreen Abid, Research Associate, Strategic Vision Institute (SVI), Islamabad.

Sunday, March 28, 2021

The Main Cause of the Sixth Seal (Revelation 6:12)

  


Nuclear power plant in Buchanan, New York
Indian Point Energy Center (IPEC) is a three-unit nuclear power plant station located in Buchanan, New York, just south of Peekskill. It sits on the east bank of the Hudson River, about 36 miles (58 km) north of Midtown Manhattan. The plant generates over 2,000 megawatts (MWe) of electrical power. For reference, the record peak energy consumption of New York City and Westchester County (the ConEdison Service Territory) was set during a seven-day heat wave on July 19, 2013, at 13,322 megawatts.[3] Electrical energy consumption varies greatly with time of day and season.[4]
Quick Facts: Country, Location …
The plant is owned and operated by Entergy Nuclear Northeast, a subsidiary of Entergy Corporation, and includes two operating Westinghouse pressurized water reactors—designated “Indian Point 2” and “Indian Point 3″—which Entergy bought from Consolidated Edison and the New York Power Authority respectively. The facility also contains the permanently shut-down Indian Point Unit 1 reactor. As of 2015, the number of permanent jobs at the Buchanan plant is approximately 1,000.
The original 40-year operating licenses for units 2 and 3 expired in September 2013 and December 2015, respectively. Entergy had applied for license extensions and the Nuclear Regulatory Commission (NRC) was moving toward granting a twenty-year extension for each reactor. However, after pressure from local environmental groups and New York governor Andrew Cuomo, it was announced that the plant is scheduled to be shut down by 2021.[5] Local groups had cited increasingly frequent issues with the aging units, ongoing environmental releases, and the proximity of the plant to New York City.[6]
Reactors
History and design
The reactors are built on land that originally housed the Indian Point Amusement Park, but was acquired by Consolidated Edison (ConEdison) on October 14, 1954.[7] Indian Point 1, built by ConEdison, was a 275-megawatt Babcock & Wilcox supplied [8] pressurized water reactor that was issued an operating license on March 26, 1962 and began operations on September 16, 1962.[9] The first core used a thorium-based fuel with stainless steel cladding, but this fuel did not live up to expectations for core life.[10] The plant was operated with uranium dioxide fuel for the remainder of its life. The reactor was shut down on October 31, 1974, because the emergency core cooling system did not meet regulatory requirements. All spent fuel was removed from the reactor vessel by January 1976, but the reactor still stands.[11] The licensee, Entergy, plans to decommission Unit 1 when Unit 2 is decommissioned.[12]
The two additional reactors, Indian Point 2 and 3, are four-loop Westinghouse pressurized water reactors both of similar design. Units 2 and 3 were completed in 1974 and 1976, respectively. Unit 2 has a generating capacity of 1,032 MW, and Unit 3 has a generating capacity of 1,051 MW. Both reactors use uranium dioxide fuel of no more than 4.8% U-235 enrichment. The reactors at Indian Point are protected by containment domes made of steel-reinforced concrete that is 40 inches thick, with a carbon steel liner.[13]
Nuclear capacity in New York state
Units 2 and 3 are two of six operating nuclear energy sources in New York State. New York is one of the five largest states in terms of nuclear capacity and generation, accounting for approximately 5% of the national totals. Indian Point provides 39% of the state’s nuclear capacity. Nuclear power produces 34.2% of the state’s electricity, higher than the U.S. average of 20.6%. In 2017, Indian Point generated approximately 10% of the state’s electricity needs, and 25% of the electricity used in New York City and Westchester County.[14] Its contract with Consolidated Edison is for just 560 megawatts. The New York Power Authority, which built Unit 3, stopped buying electricity from Indian Point in 2012. NYPA supplies the subways, airports, and public schools and housing in NYC and Westchester County. Entergy sells the rest of Indian Point’s output into the NYISO administered electric wholesale markets and elsewhere in New England.[15][16][17][18] In 2013, New York had the fourth highest average electricity prices in the United States. Half of New York’s power demand is in the New York City region; about two-fifths of generation originates there.[19][20]
Refueling
The currently operating Units 2 and 3 are each refueled on a two-year cycle. At the end of each fuel cycle, one unit is brought offline for refueling and maintenance activities. On March 2, 2015, Indian Point 3 was taken offline for 23 days to perform its refueling operations. Entergy invested $50 million in the refueling and other related projects for Unit 3, of which $30 million went to employee salaries. The unit was brought back online on March 25, 2015.[21]
Effects
Economic impact
A June 2015 report by a lobby group called Nuclear Energy Institute found that the operation of Indian Point generates $1.3 billion of annual economic output in local counties, $1.6 billion statewide, and $2.5 billion across the United States. In 2014, Entergy paid $30 million in state and local property taxes. The total tax revenue (direct and secondary) was nearly $340 million to local, state, and federal governments.[15] According to the Village of Buchanan budget for 2016–2017, a payment in lieu of taxes in the amount of $2.62 million was received in 2015-2016, and was projected to be $2.62 million in 2016–2017 – the majority of which can be assumed to come from the Indian Point Energy Center.[22]
Over the last decade, the station has maintained a capacity factor of greater than 93 percent. This is consistently higher than the nuclear industry average and than other forms of generation. The reliability helps offset the severe price volatility of other energy sources (e.g., natural gas) and the indeterminacy of renewable electricity sources (e.g., solar, wind).[15]
Indian Point directly employs about 1,000 full-time workers. This employment creates another 2,800 jobs in the five-county region, and 1,600 in other industries in New York, for a total of 5,400 in-state jobs. Additionally, another 5,300 indirect jobs are created out of state, creating a sum total of 10,700 jobs throughout the United States.[15]
Environmental concerns
Environmentalists have expressed concern about increased carbon emissions with the impending shutdown of Indian Point (generating electricity with nuclear energy creates no carbon emissions). A study undertaken by Environmental Progress found that closure of the plant would cause power emissions to jump 29% in New York, equivalent to the emissions from 1.4 million additional cars on New York roads.[23]
Some environmental groups have expressed concerns about the operation of Indian Point, including radiation pollution and endangerment of wildlife, but whether Indian Point has ever posed a significant danger to wildlife or the public remains controversial. Though anti-nuclear group Riverkeeper notes “Radioactive leakage from the plant containing several radioactive isotopes, such as strontium-90, cesium-137, cobalt-60, nickel-63 and tritium, a rarely-occurring isotope of hydrogen, has flowed into groundwater that eventually enters the Hudson River in the past[24], there is no evidence radiation from the plant has ever posed a significant hazard to local residents or wildlife. In the last year[when?], nine tritium leaks have occurred, however, even at their highest levels the leaks have never exceeded one-tenth of one percent of US Nuclear Regulatory Commission limits.
In February 2016, New York State Governor Andrew Cuomo called for a full investigation by state environment[25] and health officials and is partnering with organizations like Sierra Club, Riverkeepers, Hudson River Sloop Clearwater, Indian Point Safe Energy Coalition, Scenic Hudson and Physicians for Social Responsibility in seeking the permanent closure of the plant.[citation needed] However, Cuomo’s motivation for closing the plant was called into question after it was revealed two top former aides, under federal prosecution for influence-peddling, had lobbied on behalf of natural gas company Competitive Power Ventures (CPV) to kill Indian Point. In his indictment, US attorney Preet Bharara wrote “the importance of the plant [CPV’s proposed Valley Energy Center, a plant powered by natural gas] to the State depended at least in part, on whether [Indian Point] was going to be shut down.”[26]
In April 2016 climate scientist James Hansen took issue with calls to shut the plant down, including those from presidential candidate Bernie Sanders. “The last few weeks have seen an orchestrated campaign to mislead the people of New York about the essential safety and importance of Indian Point nuclear plant to address climate change,” wrote Hansen, adding “Sanders has offered no evidence that NRC [U.S. Nuclear Regulatory Commission] has failed to do its job, and he has no expertise in over-riding NRC’s judgement. For the sake of future generations who could be harmed by irreversible climate change, I urge New Yorkers to reject this fear mongering and uphold science against ideology.”[27]
Indian Point removes water from the nearby Hudson River. Despite the use of fish screens, the cooling system kills over a billion fish eggs and larvae annually.[28] According to one NRC report from 2010, as few as 38% of alewives survive the screens.[29] On September 14, 2015, a state hearing began in regards to the deaths of fish in the river, and possibly implementing a shutdown period from May to August. An Indian Point spokesman stated that such a period would be unnecessary, as Indian Point “is fully protective of life in the Hudson River and $75 million has been spent over the last 30 years on scientific studies demonstrating that the plant has no harmful impact to adult fish.” The hearings lasted three weeks.[30] Concerns were also raised over the planned building of new cooling towers, which would cut down forest land that is suspected to be used as breeding ground by muskrat and mink. At the time of the report, no minks or muskrats were spotted there.[29]
Safety
Indian Point Energy Center has been given an incredible amount of scrutiny from the media and politicians and is regulated more heavily than various other power plants in the state of New York (i.e., by the NRC in addition to FERC, the NYSPSC, the NYISO, the NYSDEC, and the EPA). On a forced outage basis – incidents related to electrical equipment failure that force a plant stoppage – it provides a much more reliable operating history than most other power plants in New York.[31][32] Beginning at the end of 2015, Governor Cuomo began to ramp up political action against the Indian Point facility, opening an investigation with the state public utility commission, the department of health, and the department of environmental conservation.[33][34][35][30][36][37] To put the public service commission investigation in perspective: most electric outage investigations conducted by the commission are in response to outages with a known number of affected retail electric customers.[38] By November 17, 2017, the NYISO accepted Indian Point’s retirement notice.[39]
In 1997, Indian Point Unit 3 was removed from the NRC’s list of plants that receive increased attention from the regulator. An engineer for the NRC noted that the plant had been experiencing increasingly fewer problems during inspections.[40] On March 10, 2009 the Indian Point Power Plant was awarded the fifth consecutive top safety rating for annual operations by the Federal regulators. According to the Hudson Valley Journal News, the plant had shown substantial improvement in its safety culture in the previous two years.[41] A 2003 report commissioned by then-Governor George Pataki concluded that the “current radiological response system and capabilities are not adequate to…protect the people from an unacceptable dose of radiation in the event of a release from Indian Point”.[42] More recently, in December 2012 Entergy commissioned a 400-page report on the estimates of evacuation times. This report, performed by emergency planning company KLD Engineering, concluded that the existing traffic management plans provided by Orange, Putnam, Rockland, and Westchester Counties are adequate and require no changes.[43] According to one list that ranks U.S. nuclear power plants by their likelihood of having a major natural disaster related incident, Indian Point is the most likely to be hit by a natural disaster, mainly an earthquake.[44][45][46][47] Despite this, the owners of the plant still say that safety is a selling point for the nuclear power plant.[48]
▪ In 1973, five months after Indian Point 2 opened, the plant was shut down when engineers discovered buckling in the steel liner of the concrete dome in which the nuclear reactor is housed.[49]
▪ On October 17, 1980,[50] 100,000 gallons of Hudson River water leaked into the Indian Point 2 containment building from the fan cooling unit, undetected by a safety device designed to detect hot water. The flooding, covering the first nine feet of the reactor vessel, was discovered when technicians entered the building. Two pumps that should have removed the water were found to be inoperative. NRC proposed a $2,100,000 fine for the incident.
▪ In February 2000, Unit 2 experienced a Steam Generator Tube Rupture (SGTR), which allowed primary water to leak into the secondary system through one of the steam generators.[51] All four steam generators were subsequently replaced.[citation needed]
▪ In 2005, Entergy workers while digging discovered a small leak in a spent fuel pool. Water containing tritium and strontium-90 was leaking through a crack in the pool building and then finding its way into the nearby Hudson River. Workers were able to keep the spent fuel rods safely covered despite the leak.[52] On March 22, 2006 The New York Times also reported finding radioactive nickel-63 and strontium in groundwater on site.[53]
▪ In 2007, a transformer at Unit 3 caught fire, and the Nuclear Regulatory Commission raised its level of inspections, because the plant had experienced many unplanned shutdowns. According to The New York Times, Indian Point “has a history of transformer problems”.[54]
▪ On April 23, 2007, the Nuclear Regulatory Commission fined the owner of the Indian Point nuclear plant $130,000 for failing to meet a deadline for a new emergency siren plan. The 150 sirens at the plant are meant to alert residents within 10 miles to a plant emergency.[55]
▪ On January 7, 2010, NRC inspectors reported that an estimated 600,000 gallons of mildly radioactive steam was intentionally vented to the atmosphere after an automatic shutdown of Unit 2. After the vent, one of the vent valves unintentionally remained slightly open for two days. The levels of tritium in the steam were within the allowable safety limits defined in NRC standards.[56]
▪ On November 7, 2010, an explosion occurred in a main transformer for Indian Point 2, spilling oil into the Hudson River.[57] Entergy later agreed to pay a $1.2 million penalty for the transformer explosion.[54]
▪ July 2013, a former supervisor, who worked at the Indian Point nuclear power plant for twenty-nine years, was arrested for falsifying the amount of particulate in the diesel fuel for the plant’s backup generators.[58]
▪ On May 9, 2015, a transformer failed at Indian Point 3, causing the automated shutdown of reactor 3. A fire that resulted from the failure was extinguished, and the reactor was placed in a safe and stable condition.[59] The failed transformer contained about 24,000 gallons of dielectric fluid, which is used as an insulator and coolant when the transformer is energized. The U.S. Coast Guard estimates that about 3,000 gallons of dielectric fluid entered the river following the failure.[60]
▪ In June 2015, a mylar balloon floated into a switchyard, causing an electrical problem resulting in the shutdown of Reactor 3.[61]
▪ In July 2015, Reactor 3 was shut down after a water pump failure.[citation needed]
▪ On December 5, 2015, Indian Point 2 was shut down after several control rods lost power.[62]
▪ On February 6, 2016, Governor Andrew Cuomo informed the public that radioactive tritium-contaminated water leaked into the groundwater at the Indian Point Nuclear facility.[25]
Spent fuel
Indian Point stores used fuel rods in two spent fuel pools at the facility.[52] The spent fuel pools at Indian Point are not stored under a containment dome like the reactor, but rather they are contained within an indoor 40-foot-deep pool and submerged under 27 feet of water. Water is a natural and effective barrier to radiation. The spent fuel pools at Indian Point are set in bedrock and are constructed of concrete walls that are four to six feet wide, with a quarter-inch thick stainless steel inner liner. The pools each have multiple redundant backup cooling systems.[52][63]
Indian Point began dry cask storage of spent fuel rods in 2008, which is a safe and environmentally sound option according to the Nuclear Regulatory Commission.[64] Some rods have already been moved to casks from the spent fuel pools. The pools will be kept nearly full of spent fuel, leaving enough space to allow emptying the reactor completely.[65] Dry cask storage systems are designed to resist floods, tornadoes, projectiles, temperature extremes, and other unusual scenarios. The NRC requires the spent fuel to be cooled and stored in the spent fuel pool for at least five years before being transferred to dry casks.[66]
Earthquake risk
In 2008, researchers from Columbia University’s Lamont-Doherty Earth Observatory located a previously unknown active seismic zone running from Stamford, Connecticut, to the Hudson Valley town of Peekskill, New York—the intersection of the Stamford-Peekskill line with the well-known Ramapo Fault—which passes less than a mile north of the Indian Point nuclear power plant.[67] The Ramapo Fault is the longest fault in the Northeast, but scientists dispute how active this roughly 200-million-year-old fault really is. Many earthquakes in the state’s surprisingly varied seismic history are believed to have occurred on or near it. Visible at ground level, the fault line likely extends as deep as nine miles below the surface.[68]
In July 2013, Entergy engineers reassessed the risk of seismic damage to Unit 3 and submitted their findings in a report to the NRC. It was found that risk leading to reactor core damage is 1 in 106,000 reactor years using U.S. Geological Survey data; and 1 in 141,000 reactor years using Electric Power Research Institute data. Unit 3’s previous owner, the New York Power Authority, had conducted a more limited analysis in the 1990s than Unit 2’s previous owner, Con Edison, leading to the impression that Unit 3 had fewer seismic protections than Unit 2. Neither submission of data from the previous owners was incorrect.[69]
According to a company spokesman, Indian Point was built to withstand an earthquake of 6.1 on the Richter scale.[70] Entergy executives have also noted “that Indian Point had been designed to withstand an earthquake much stronger than any on record in the region, though not one as powerful as the quake that rocked Japan.”[71]
The Nuclear Regulatory Commission’s estimate of the risk each year of an earthquake intense enough to cause core damage to the reactor at Indian Point was Reactor 2: 1 in 30,303; Reactor 3: 1 in 10,000, according to an NRC study published in August 2010. Msnbc.com reported based on the NRC data that “Indian Point nuclear reactor No. 3 has the highest risk of earthquake damage in the country, according to new NRC risk estimates provided to msnbc.com.” According to the report, the reason is that plants in known earthquake zones like California were designed to be more quake-resistant than those in less affected areas like New York.[72][73] The NRC did not dispute the numbers but responded in a release that “The NRC results to date should not be interpreted as definitive estimates of seismic risk,” because the NRC does not rank plants by seismic risk.[74]
IPEC Units 2 and 3 both operated at 100% full power before, during, and after the Virginia earthquake on August 23, 2011. A thorough inspection of both units by plant personnel immediately following this event verified no significant damage occurred at either unit.
Emergency planning
The Nuclear Regulatory Commission defines two emergency planning zones around nuclear power plants: a plume exposure pathway zone with a radius of 10 miles (16 km), concerned primarily with exposure to, and inhalation of, airborne radioactive contamination, and an ingestion pathway zone of about 50 miles (80 km), concerned primarily with ingestion of food and liquid contaminated by radioactivity.[75]
According to an analysis of U.S. Census data for MSNBC, the 2010 U.S. population within 10 miles (16 km) of Indian Point was 272,539, an increase of 17.6 percent during the previous ten years. The 2010 U.S. population within 50 miles (80 km) was 17,220,895, an increase of 5.1 percent since 2000. Cities within 50 miles include New York (41 miles to city center); Bridgeport, Conn. (40 miles); Newark, N.J. (39 miles); and Stamford, Conn. (24 miles).[76]
In the wake of the 2011 Fukushima incident in Japan, the State Department recommended that any Americans in Japan stay beyond fifty miles from the area.[citation needed] Columnist Peter Applebome, writing in The New York Times, noted that such an area around Indian Point would include “almost all of New York City except for Staten Island; almost all of Nassau County and much of Suffolk County; all of Bergen County, N.J.; all of Fairfield, Conn.” He quotes Purdue University professor Daniel Aldrich as saying “Many scholars have already argued that any evacuation plans shouldn’t be called plans, but rather “fantasy documents””.[42]
The current 10-mile plume-exposure pathway Emergency Planning Zone (EPZ) is one of two EPZs intended to facilitate a strategy for protective action during an emergency and comply with NRC regulations. “The exact size and shape of each EPZ is a result of detailed planning which includes consideration of the specific conditions at each site, unique geographical features of the area, and demographic information. This preplanned strategy for an EPZ provides a substantial basis to support activity beyond the planning zone in the extremely unlikely event it would be needed.”[77]
In an interview, Entergy executives said they doubt that the evacuation zone would be expanded to reach as far as New York City.[71]
Indian Point is protected by federal, state, and local law enforcement agencies, including a National Guard base within a mile of the facility, as well as by private off-site security forces.[78]
During the September 11 attacks, American Airlines Flight 11 flew near the Indian Point Energy Center en route to the World Trade Center. Mohamed Atta, one of the 9/11 hijackers/plotters, had considered nuclear facilities for targeting in a terrorist attack.[79] Entergy says it is prepared for a terrorist attack, and asserts that a large airliner crash into the containment building would not cause reactor damage.[80] Following 9/11 the NRC required operators of nuclear facilities in the U.S. to examine the effects of terrorist events and provide planned responses.[81] In September 2006, the Indian Point Security Department successfully completed mock assault exercises required by the Nuclear Regulatory Commission.[citation needed] However, according to environmental group Riverkeeper, these NRC exercises are inadequate because they do not envision a sufficiently large group of attackers.[citation needed]
According to The New York Times, fuel stored in dry casks is less vulnerable to terrorist attack than fuel in the storage pools.[65]
Recertification
Units 2 and 3 were both originally licensed by the NRC for 40 years of operation. The NRC limits commercial power reactor licenses to an initial 40 years, but also permits such licenses to be renewed. This original 40-year term for reactor licenses was based on economic and antitrust considerations, not on limitations of nuclear technology. Due to this selected period, however, some structures and components may have been engineered on the basis of an expected 40-year service life.[82] The original federal license for Unit Two expired on September 28, 2013,[83][84] and the license for Unit Three was due to expire in December 2015.[85] On April 30, 2007, Entergy submitted an application for a 20-year renewal of the licenses for both units. On May 2, 2007, the NRC announced that this application is available for public review.[86] Because the owner submitted license renewal applications at least five years prior to the original expiration date, the units are allowed to continue operation past this date while the NRC considers the renewal application.
On September 23, 2007, the antinuclear group Friends United for Sustainable Energy (FUSE) filed legal papers with the NRC opposing the relicensing of the Indian Point 2 reactor. The group contended that the NRC improperly held Indian Point to less stringent design requirements. The NRC responded that the newer requirements were put in place after the plant was complete.[87]
On December 1, 2007, Westchester County Executive Andrew J. Spano, New York Attorney General Andrew Cuomo, and New York Governor Eliot Spitzer called a press conference with the participation of environmental advocacy groups Clearwater and Riverkeeper to announce their united opposition to the re-licensing of the Indian Point nuclear power plants. The New York State Department of Environmental Conservation and the Office of the Attorney General requested a hearing as part of the process put forth by the Nuclear Regulatory Commission.[citation needed] In September 2007 The New York Times reported on the rigorous legal opposition Entergy faces in its request for a 20-year licensing extension for Indian Point Nuclear Reactor 2.[87]
A water quality certificate is a prerequisite for a twenty-year renewal by the NRC.[citation needed] On April 3, 2010, the New York State Department of Environmental Conservation ruled that Indian Point violates the federal Clean Water Act,[88] because “the power plant’s water-intake system kills nearly a billion aquatic organisms a year, including the shortnose sturgeon, an endangered species.”[citation needed] The state is demanding that Entergy constructs new closed-cycle cooling towers at a cost of over $1 billion, a decision that will effectively close the plant for nearly a year. Regulators denied Entergy’s request to install fish screens that they said would improve fish mortality more than new cooling towers. Anti-nuclear groups and environmentalists have in the past tried to close the plant,[citation needed] which is in a more densely populated area than any of the 66 other nuclear plant sites in the US.[citation needed] Opposition to the plant[from whom?] increased after the September 2001 terror attacks,[citation needed] when one of the hijacked jets flew close to the plant on its way to the World Trade Center.[citation needed] Public worries also increased after the 2011 Japanese Fukushima Daiichi nuclear disaster and after a report highlighting the Indian Point plant’s proximity to the Ramapo Fault.[citation needed]
Advocates of recertifying Indian Point include former New York City mayors Michael Bloomberg and Rudolph W. Giuliani. Bloomberg says that “Indian Point is critical to the city’s economic viability”.[89] The New York Independent System Operator maintains that in the absence of Indian Point, grid voltages would degrade, which would limit the ability to transfer power from upstate New York resources through the Hudson Valley to New York City.[90]
As the current governor, Andrew Cuomo continues to call for closure of Indian Point.[91] In late June 2011, a Cuomo advisor in a meeting with Entergy executives informed them for the first time directly of the Governor’s intention to close the plant, while the legislature approved a bill to streamline the process of siting replacement plants.[92]
Nuclear energy industry figures and analysts responded to Cuomo’s initiative by questioning whether replacement electrical plants could be certified and built rapidly enough to replace Indian Point, given New York state’s “cumbersome regulation process”, and also noted that replacement power from out of state sources will be hard to obtain because New York has weak ties to generation capacity in other states.[citation needed] They said that possible consequences of closure will be a sharp increase in the cost of electricity for downstate users and even “rotating black-outs”.[93]
Several members of the House of Representatives representing districts near the plant have also opposed recertification, including Democrats Nita Lowey, Maurice Hinchey, and Eliot Engel and then Republican member Sue Kelly.[94]
In November 2016 the New York Court of Appeals ruled that the application to renew the NRC operating licences must be reviewed against the state’s coastal management program, which The New York State Department of State had already decided was inconsistent with coastal management requirements. Entergy has filed a lawsuit regarding the validity of Department of State’s decision.[95]
Closure
Beginning at the end of 2015, Governor Cuomo began to ramp up political action against the Indian Point facility, opening investigations with the state public utility commission, the department of health and the department of environmental conservation.[33][34][35][30][36][37] To put the public service commission investigation in perspective, most electric outage investigations conducted by the commission are in response to outages with a known number of affected retail electric customers.[38] By November 17, 2017, the NYISO accepted Indian Point’s retirement notice.[39]
In January 2017, the governor’s office announced closure by 2020-21.[96] The closure, along with pollution control, challenges New York’s ability to be supplied.[citation needed] Among the solution proposals are storage, renewables (solar and wind), a new transmission cables from Canada [97][98] and a 650MW natural gas plant located in Wawayanda, New York.[99] There was also a 1,000 MW merchant HVDC transmission line proposed in 2013 to the public service commission that would have interconnected at Athens, New York and Buchanan, New York, however this project was indefinitely stalled when its proposed southern converter station site was bought by the Town of Cortlandt in a land auction administered by Con Edison.[100][101][102] As of October 1, 2018, the 650 MW plant built in Wawayanda, New York, by CPV Valley, is operating commercially.[103] The CPV Valley plant has been associated with Governor Cuomo’s close aid, Joe Percoco, and the associated corruption trial.[104] Another plant being built, Cricket Valley Energy Center, rated at 1,100 MW, is on schedule to provide energy by 2020 in Dover, New York.[105] An Indian Point contingency plan, initiated in 2012 by the NYSPSC under the administration of Cuomo, solicited energy solutions from which a Transmission Owner Transmission Solutions (TOTS) plan was selected. The TOTS projects provide 450 MW[106] of additional transfer capability across a NYISO defined electric transmission corridor in the form of three projects: series compensation at a station in Marcy, New York, reconductoring a transmission line, adding an additional transmission line, and “unbottling” Staten Island capacity. These projects, with the exception of part of the Staten Island “unbottling” were in service by mid-2016. The cost of the TOTS projects are distributed among various utilities in their rate cases before the public service commission and the cost allocation amongst themselves was approved by FERC. NYPA and LIPA are also receiving a portion. The cost of the TOTS projects has been estimated in the range of $27 million to $228 million.[107][108][109][110][111] An energy highway initiative was also prompted by this order (generally speaking, additional lines on the Edic-Pleasant Valley and the Oakdale-Fraser transmission corridors) which is still going through the regulatory process in both the NYISO and NYSPSC.
Under the current plan, one reactor is scheduled to be shut down in April 2020 and the second by April 2021.[112] A report by the New York Building Congress, a construction industry association, has said that NYC will need additional natural gas pipelines to accommodate the city’s increasing demand for energy. Environmentalists have argued that the power provided by Indian point can be replaced by renewable energy, combined with conservation measures and improvements to the efficiency of the electrical grid.[113]