Wednesday, May 31, 2023

The Main Cause of the Sixth Seal (Revelation 6:12)

   


Nuclear power plant in Buchanan, New York
Indian Point Energy Center (IPEC) is a three-unit nuclear power plant station located in Buchanan, New York, just south of Peekskill. It sits on the east bank of the Hudson River, about 36 miles (58 km) north of Midtown Manhattan. The plant generates over 2,000 megawatts (MWe) of electrical power. For reference, the record peak energy consumption of New York City and Westchester County (the ConEdison Service Territory) was set during a seven-day heat wave on July 19, 2013, at 13,322 megawatts.[3] Electrical energy consumption varies greatly with time of day and season.[4]
Quick Facts: Country, Location …
The plant is owned and operated by Entergy Nuclear Northeast, a subsidiary of Entergy Corporation, and includes two operating Westinghouse pressurized water reactors—designated “Indian Point 2” and “Indian Point 3″—which Entergy bought from Consolidated Edison and the New York Power Authority respectively. The facility also contains the permanently shut-down Indian Point Unit 1 reactor. As of 2015, the number of permanent jobs at the Buchanan plant is approximately 1,000.
The original 40-year operating licenses for units 2 and 3 expired in September 2013 and December 2015, respectively. Entergy had applied for license extensions and the Nuclear Regulatory Commission (NRC) was moving toward granting a twenty-year extension for each reactor. However, after pressure from local environmental groups and New York governor Andrew Cuomo, it was announced that the plant is scheduled to be shut down by 2021.[5] Local groups had cited increasingly frequent issues with the aging units, ongoing environmental releases, and the proximity of the plant to New York City.[6]
Reactors
History and design
The reactors are built on land that originally housed the Indian Point Amusement Park, but was acquired by Consolidated Edison (ConEdison) on October 14, 1954.[7] Indian Point 1, built by ConEdison, was a 275-megawatt Babcock & Wilcox supplied [8] pressurized water reactor that was issued an operating license on March 26, 1962 and began operations on September 16, 1962.[9] The first core used a thorium-based fuel with stainless steel cladding, but this fuel did not live up to expectations for core life.[10] The plant was operated with uranium dioxide fuel for the remainder of its life. The reactor was shut down on October 31, 1974, because the emergency core cooling system did not meet regulatory requirements. All spent fuel was removed from the reactor vessel by January 1976, but the reactor still stands.[11] The licensee, Entergy, plans to decommission Unit 1 when Unit 2 is decommissioned.[12]
The two additional reactors, Indian Point 2 and 3, are four-loop Westinghouse pressurized water reactors both of similar design. Units 2 and 3 were completed in 1974 and 1976, respectively. Unit 2 has a generating capacity of 1,032 MW, and Unit 3 has a generating capacity of 1,051 MW. Both reactors use uranium dioxide fuel of no more than 4.8% U-235 enrichment. The reactors at Indian Point are protected by containment domes made of steel-reinforced concrete that is 40 inches thick, with a carbon steel liner.[13]
Nuclear capacity in New York state
Units 2 and 3 are two of six operating nuclear energy sources in New York State. New York is one of the five largest states in terms of nuclear capacity and generation, accounting for approximately 5% of the national totals. Indian Point provides 39% of the state’s nuclear capacity. Nuclear power produces 34.2% of the state’s electricity, higher than the U.S. average of 20.6%. In 2017, Indian Point generated approximately 10% of the state’s electricity needs, and 25% of the electricity used in New York City and Westchester County.[14] Its contract with Consolidated Edison is for just 560 megawatts. The New York Power Authority, which built Unit 3, stopped buying electricity from Indian Point in 2012. NYPA supplies the subways, airports, and public schools and housing in NYC and Westchester County. Entergy sells the rest of Indian Point’s output into the NYISO administered electric wholesale markets and elsewhere in New England.[15][16][17][18] In 2013, New York had the fourth highest average electricity prices in the United States. Half of New York’s power demand is in the New York City region; about two-fifths of generation originates there.[19][20]
Refueling
The currently operating Units 2 and 3 are each refueled on a two-year cycle. At the end of each fuel cycle, one unit is brought offline for refueling and maintenance activities. On March 2, 2015, Indian Point 3 was taken offline for 23 days to perform its refueling operations. Entergy invested $50 million in the refueling and other related projects for Unit 3, of which $30 million went to employee salaries. The unit was brought back online on March 25, 2015.[21]
Effects
Economic impact
A June 2015 report by a lobby group called Nuclear Energy Institute found that the operation of Indian Point generates $1.3 billion of annual economic output in local counties, $1.6 billion statewide, and $2.5 billion across the United States. In 2014, Entergy paid $30 million in state and local property taxes. The total tax revenue (direct and secondary) was nearly $340 million to local, state, and federal governments.[15] According to the Village of Buchanan budget for 2016–2017, a payment in lieu of taxes in the amount of $2.62 million was received in 2015-2016, and was projected to be $2.62 million in 2016–2017 – the majority of which can be assumed to come from the Indian Point Energy Center.[22]
Over the last decade, the station has maintained a capacity factor of greater than 93 percent. This is consistently higher than the nuclear industry average and than other forms of generation. The reliability helps offset the severe price volatility of other energy sources (e.g., natural gas) and the indeterminacy of renewable electricity sources (e.g., solar, wind).[15]
Indian Point directly employs about 1,000 full-time workers. This employment creates another 2,800 jobs in the five-county region, and 1,600 in other industries in New York, for a total of 5,400 in-state jobs. Additionally, another 5,300 indirect jobs are created out of state, creating a sum total of 10,700 jobs throughout the United States.[15]
Environmental concerns
Environmentalists have expressed concern about increased carbon emissions with the impending shutdown of Indian Point (generating electricity with nuclear energy creates no carbon emissions). A study undertaken by Environmental Progress found that closure of the plant would cause power emissions to jump 29% in New York, equivalent to the emissions from 1.4 million additional cars on New York roads.[23]
Some environmental groups have expressed concerns about the operation of Indian Point, including radiation pollution and endangerment of wildlife, but whether Indian Point has ever posed a significant danger to wildlife or the public remains controversial. Though anti-nuclear group Riverkeeper notes “Radioactive leakage from the plant containing several radioactive isotopes, such as strontium-90, cesium-137, cobalt-60, nickel-63 and tritium, a rarely-occurring isotope of hydrogen, has flowed into groundwater that eventually enters the Hudson River in the past[24], there is no evidence radiation from the plant has ever posed a significant hazard to local residents or wildlife. In the last year[when?], nine tritium leaks have occurred, however, even at their highest levels the leaks have never exceeded one-tenth of one percent of US Nuclear Regulatory Commission limits.
In February 2016, New York State Governor Andrew Cuomo called for a full investigation by state environment[25] and health officials and is partnering with organizations like Sierra Club, Riverkeepers, Hudson River Sloop Clearwater, Indian Point Safe Energy Coalition, Scenic Hudson and Physicians for Social Responsibility in seeking the permanent closure of the plant.[citation needed] However, Cuomo’s motivation for closing the plant was called into question after it was revealed two top former aides, under federal prosecution for influence-peddling, had lobbied on behalf of natural gas company Competitive Power Ventures (CPV) to kill Indian Point. In his indictment, US attorney Preet Bharara wrote “the importance of the plant [CPV’s proposed Valley Energy Center, a plant powered by natural gas] to the State depended at least in part, on whether [Indian Point] was going to be shut down.”[26]
In April 2016 climate scientist James Hansen took issue with calls to shut the plant down, including those from presidential candidate Bernie Sanders. “The last few weeks have seen an orchestrated campaign to mislead the people of New York about the essential safety and importance of Indian Point nuclear plant to address climate change,” wrote Hansen, adding “Sanders has offered no evidence that NRC [U.S. Nuclear Regulatory Commission] has failed to do its job, and he has no expertise in over-riding NRC’s judgement. For the sake of future generations who could be harmed by irreversible climate change, I urge New Yorkers to reject this fear mongering and uphold science against ideology.”[27]
Indian Point removes water from the nearby Hudson River. Despite the use of fish screens, the cooling system kills over a billion fish eggs and larvae annually.[28] According to one NRC report from 2010, as few as 38% of alewives survive the screens.[29] On September 14, 2015, a state hearing began in regards to the deaths of fish in the river, and possibly implementing a shutdown period from May to August. An Indian Point spokesman stated that such a period would be unnecessary, as Indian Point “is fully protective of life in the Hudson River and $75 million has been spent over the last 30 years on scientific studies demonstrating that the plant has no harmful impact to adult fish.” The hearings lasted three weeks.[30] Concerns were also raised over the planned building of new cooling towers, which would cut down forest land that is suspected to be used as breeding ground by muskrat and mink. At the time of the report, no minks or muskrats were spotted there.[29]
Safety
Indian Point Energy Center has been given an incredible amount of scrutiny from the media and politicians and is regulated more heavily than various other power plants in the state of New York (i.e., by the NRC in addition to FERC, the NYSPSC, the NYISO, the NYSDEC, and the EPA). On a forced outage basis – incidents related to electrical equipment failure that force a plant stoppage – it provides a much more reliable operating history than most other power plants in New York.[31][32] Beginning at the end of 2015, Governor Cuomo began to ramp up political action against the Indian Point facility, opening an investigation with the state public utility commission, the department of health, and the department of environmental conservation.[33][34][35][30][36][37] To put the public service commission investigation in perspective: most electric outage investigations conducted by the commission are in response to outages with a known number of affected retail electric customers.[38] By November 17, 2017, the NYISO accepted Indian Point’s retirement notice.[39]
In 1997, Indian Point Unit 3 was removed from the NRC’s list of plants that receive increased attention from the regulator. An engineer for the NRC noted that the plant had been experiencing increasingly fewer problems during inspections.[40] On March 10, 2009 the Indian Point Power Plant was awarded the fifth consecutive top safety rating for annual operations by the Federal regulators. According to the Hudson Valley Journal News, the plant had shown substantial improvement in its safety culture in the previous two years.[41] A 2003 report commissioned by then-Governor George Pataki concluded that the “current radiological response system and capabilities are not adequate to…protect the people from an unacceptable dose of radiation in the event of a release from Indian Point”.[42] More recently, in December 2012 Entergy commissioned a 400-page report on the estimates of evacuation times. This report, performed by emergency planning company KLD Engineering, concluded that the existing traffic management plans provided by Orange, Putnam, Rockland, and Westchester Counties are adequate and require no changes.[43] According to one list that ranks U.S. nuclear power plants by their likelihood of having a major natural disaster related incident, Indian Point is the most likely to be hit by a natural disaster, mainly an earthquake.[44][45][46][47] Despite this, the owners of the plant still say that safety is a selling point for the nuclear power plant.[48]
▪ In 1973, five months after Indian Point 2 opened, the plant was shut down when engineers discovered buckling in the steel liner of the concrete dome in which the nuclear reactor is housed.[49]
▪ On October 17, 1980,[50] 100,000 gallons of Hudson River water leaked into the Indian Point 2 containment building from the fan cooling unit, undetected by a safety device designed to detect hot water. The flooding, covering the first nine feet of the reactor vessel, was discovered when technicians entered the building. Two pumps that should have removed the water were found to be inoperative. NRC proposed a $2,100,000 fine for the incident.
▪ In February 2000, Unit 2 experienced a Steam Generator Tube Rupture (SGTR), which allowed primary water to leak into the secondary system through one of the steam generators.[51] All four steam generators were subsequently replaced.[citation needed]
▪ In 2005, Entergy workers while digging discovered a small leak in a spent fuel pool. Water containing tritium and strontium-90 was leaking through a crack in the pool building and then finding its way into the nearby Hudson River. Workers were able to keep the spent fuel rods safely covered despite the leak.[52] On March 22, 2006 The New York Times also reported finding radioactive nickel-63 and strontium in groundwater on site.[53]
▪ In 2007, a transformer at Unit 3 caught fire, and the Nuclear Regulatory Commission raised its level of inspections, because the plant had experienced many unplanned shutdowns. According to The New York Times, Indian Point “has a history of transformer problems”.[54]
▪ On April 23, 2007, the Nuclear Regulatory Commission fined the owner of the Indian Point nuclear plant $130,000 for failing to meet a deadline for a new emergency siren plan. The 150 sirens at the plant are meant to alert residents within 10 miles to a plant emergency.[55]
▪ On January 7, 2010, NRC inspectors reported that an estimated 600,000 gallons of mildly radioactive steam was intentionally vented to the atmosphere after an automatic shutdown of Unit 2. After the vent, one of the vent valves unintentionally remained slightly open for two days. The levels of tritium in the steam were within the allowable safety limits defined in NRC standards.[56]
▪ On November 7, 2010, an explosion occurred in a main transformer for Indian Point 2, spilling oil into the Hudson River.[57] Entergy later agreed to pay a $1.2 million penalty for the transformer explosion.[54]
▪ July 2013, a former supervisor, who worked at the Indian Point nuclear power plant for twenty-nine years, was arrested for falsifying the amount of particulate in the diesel fuel for the plant’s backup generators.[58]
▪ On May 9, 2015, a transformer failed at Indian Point 3, causing the automated shutdown of reactor 3. A fire that resulted from the failure was extinguished, and the reactor was placed in a safe and stable condition.[59] The failed transformer contained about 24,000 gallons of dielectric fluid, which is used as an insulator and coolant when the transformer is energized. The U.S. Coast Guard estimates that about 3,000 gallons of dielectric fluid entered the river following the failure.[60]
▪ In June 2015, a mylar balloon floated into a switchyard, causing an electrical problem resulting in the shutdown of Reactor 3.[61]
▪ In July 2015, Reactor 3 was shut down after a water pump failure.[citation needed]
▪ On December 5, 2015, Indian Point 2 was shut down after several control rods lost power.[62]
▪ On February 6, 2016, Governor Andrew Cuomo informed the public that radioactive tritium-contaminated water leaked into the groundwater at the Indian Point Nuclear facility.[25]
Spent fuel
Indian Point stores used fuel rods in two spent fuel pools at the facility.[52] The spent fuel pools at Indian Point are not stored under a containment dome like the reactor, but rather they are contained within an indoor 40-foot-deep pool and submerged under 27 feet of water. Water is a natural and effective barrier to radiation. The spent fuel pools at Indian Point are set in bedrock and are constructed of concrete walls that are four to six feet wide, with a quarter-inch thick stainless steel inner liner. The pools each have multiple redundant backup cooling systems.[52][63]
Indian Point began dry cask storage of spent fuel rods in 2008, which is a safe and environmentally sound option according to the Nuclear Regulatory Commission.[64] Some rods have already been moved to casks from the spent fuel pools. The pools will be kept nearly full of spent fuel, leaving enough space to allow emptying the reactor completely.[65] Dry cask storage systems are designed to resist floods, tornadoes, projectiles, temperature extremes, and other unusual scenarios. The NRC requires the spent fuel to be cooled and stored in the spent fuel pool for at least five years before being transferred to dry casks.[66]
Earthquake risk
In 2008, researchers from Columbia University’s Lamont-Doherty Earth Observatory located a previously unknown active seismic zone running from Stamford, Connecticut, to the Hudson Valley town of Peekskill, New York—the intersection of the Stamford-Peekskill line with the well-known Ramapo Fault—which passes less than a mile north of the Indian Point nuclear power plant.[67] The Ramapo Fault is the longest fault in the Northeast, but scientists dispute how active this roughly 200-million-year-old fault really is. Many earthquakes in the state’s surprisingly varied seismic history are believed to have occurred on or near it. Visible at ground level, the fault line likely extends as deep as nine miles below the surface.[68]
In July 2013, Entergy engineers reassessed the risk of seismic damage to Unit 3 and submitted their findings in a report to the NRC. It was found that risk leading to reactor core damage is 1 in 106,000 reactor years using U.S. Geological Survey data; and 1 in 141,000 reactor years using Electric Power Research Institute data. Unit 3’s previous owner, the New York Power Authority, had conducted a more limited analysis in the 1990s than Unit 2’s previous owner, Con Edison, leading to the impression that Unit 3 had fewer seismic protections than Unit 2. Neither submission of data from the previous owners was incorrect.[69]
According to a company spokesman, Indian Point was built to withstand an earthquake of 6.1 on the Richter scale.[70] Entergy executives have also noted “that Indian Point had been designed to withstand an earthquake much stronger than any on record in the region, though not one as powerful as the quake that rocked Japan.”[71]
The Nuclear Regulatory Commission’s estimate of the risk each year of an earthquake intense enough to cause core damage to the reactor at Indian Point was Reactor 2: 1 in 30,303; Reactor 3: 1 in 10,000, according to an NRC study published in August 2010. Msnbc.com reported based on the NRC data that “Indian Point nuclear reactor No. 3 has the highest risk of earthquake damage in the country, according to new NRC risk estimates provided to msnbc.com.” According to the report, the reason is that plants in known earthquake zones like California were designed to be more quake-resistant than those in less affected areas like New York.[72][73] The NRC did not dispute the numbers but responded in a release that “The NRC results to date should not be interpreted as definitive estimates of seismic risk,” because the NRC does not rank plants by seismic risk.[74]
IPEC Units 2 and 3 both operated at 100% full power before, during, and after the Virginia earthquake on August 23, 2011. A thorough inspection of both units by plant personnel immediately following this event verified no significant damage occurred at either unit.
Emergency planning
The Nuclear Regulatory Commission defines two emergency planning zones around nuclear power plants: a plume exposure pathway zone with a radius of 10 miles (16 km), concerned primarily with exposure to, and inhalation of, airborne radioactive contamination, and an ingestion pathway zone of about 50 miles (80 km), concerned primarily with ingestion of food and liquid contaminated by radioactivity.[75]
According to an analysis of U.S. Census data for MSNBC, the 2010 U.S. population within 10 miles (16 km) of Indian Point was 272,539, an increase of 17.6 percent during the previous ten years. The 2010 U.S. population within 50 miles (80 km) was 17,220,895, an increase of 5.1 percent since 2000. Cities within 50 miles include New York (41 miles to city center); Bridgeport, Conn. (40 miles); Newark, N.J. (39 miles); and Stamford, Conn. (24 miles).[76]
In the wake of the 2011 Fukushima incident in Japan, the State Department recommended that any Americans in Japan stay beyond fifty miles from the area.[citation needed] Columnist Peter Applebome, writing in The New York Times, noted that such an area around Indian Point would include “almost all of New York City except for Staten Island; almost all of Nassau County and much of Suffolk County; all of Bergen County, N.J.; all of Fairfield, Conn.” He quotes Purdue University professor Daniel Aldrich as saying “Many scholars have already argued that any evacuation plans shouldn’t be called plans, but rather “fantasy documents””.[42]
The current 10-mile plume-exposure pathway Emergency Planning Zone (EPZ) is one of two EPZs intended to facilitate a strategy for protective action during an emergency and comply with NRC regulations. “The exact size and shape of each EPZ is a result of detailed planning which includes consideration of the specific conditions at each site, unique geographical features of the area, and demographic information. This preplanned strategy for an EPZ provides a substantial basis to support activity beyond the planning zone in the extremely unlikely event it would be needed.”[77]
In an interview, Entergy executives said they doubt that the evacuation zone would be expanded to reach as far as New York City.[71]
Indian Point is protected by federal, state, and local law enforcement agencies, including a National Guard base within a mile of the facility, as well as by private off-site security forces.[78]
During the September 11 attacks, American Airlines Flight 11 flew near the Indian Point Energy Center en route to the World Trade Center. Mohamed Atta, one of the 9/11 hijackers/plotters, had considered nuclear facilities for targeting in a terrorist attack.[79] Entergy says it is prepared for a terrorist attack, and asserts that a large airliner crash into the containment building would not cause reactor damage.[80] Following 9/11 the NRC required operators of nuclear facilities in the U.S. to examine the effects of terrorist events and provide planned responses.[81] In September 2006, the Indian Point Security Department successfully completed mock assault exercises required by the Nuclear Regulatory Commission.[citation needed] However, according to environmental group Riverkeeper, these NRC exercises are inadequate because they do not envision a sufficiently large group of attackers.[citation needed]
According to The New York Times, fuel stored in dry casks is less vulnerable to terrorist attack than fuel in the storage pools.[65]
Recertification
Units 2 and 3 were both originally licensed by the NRC for 40 years of operation. The NRC limits commercial power reactor licenses to an initial 40 years, but also permits such licenses to be renewed. This original 40-year term for reactor licenses was based on economic and antitrust considerations, not on limitations of nuclear technology. Due to this selected period, however, some structures and components may have been engineered on the basis of an expected 40-year service life.[82] The original federal license for Unit Two expired on September 28, 2013,[83][84] and the license for Unit Three was due to expire in December 2015.[85] On April 30, 2007, Entergy submitted an application for a 20-year renewal of the licenses for both units. On May 2, 2007, the NRC announced that this application is available for public review.[86] Because the owner submitted license renewal applications at least five years prior to the original expiration date, the units are allowed to continue operation past this date while the NRC considers the renewal application.
On September 23, 2007, the antinuclear group Friends United for Sustainable Energy (FUSE) filed legal papers with the NRC opposing the relicensing of the Indian Point 2 reactor. The group contended that the NRC improperly held Indian Point to less stringent design requirements. The NRC responded that the newer requirements were put in place after the plant was complete.[87]
On December 1, 2007, Westchester County Executive Andrew J. Spano, New York Attorney General Andrew Cuomo, and New York Governor Eliot Spitzer called a press conference with the participation of environmental advocacy groups Clearwater and Riverkeeper to announce their united opposition to the re-licensing of the Indian Point nuclear power plants. The New York State Department of Environmental Conservation and the Office of the Attorney General requested a hearing as part of the process put forth by the Nuclear Regulatory Commission.[citation needed] In September 2007 The New York Times reported on the rigorous legal opposition Entergy faces in its request for a 20-year licensing extension for Indian Point Nuclear Reactor 2.[87]
A water quality certificate is a prerequisite for a twenty-year renewal by the NRC.[citation needed] On April 3, 2010, the New York State Department of Environmental Conservation ruled that Indian Point violates the federal Clean Water Act,[88] because “the power plant’s water-intake system kills nearly a billion aquatic organisms a year, including the shortnose sturgeon, an endangered species.”[citation needed] The state is demanding that Entergy constructs new closed-cycle cooling towers at a cost of over $1 billion, a decision that will effectively close the plant for nearly a year. Regulators denied Entergy’s request to install fish screens that they said would improve fish mortality more than new cooling towers. Anti-nuclear groups and environmentalists have in the past tried to close the plant,[citation needed] which is in a more densely populated area than any of the 66 other nuclear plant sites in the US.[citation needed] Opposition to the plant[from whom?] increased after the September 2001 terror attacks,[citation needed] when one of the hijacked jets flew close to the plant on its way to the World Trade Center.[citation needed] Public worries also increased after the 2011 Japanese Fukushima Daiichi nuclear disaster and after a report highlighting the Indian Point plant’s proximity to the Ramapo Fault.[citation needed]
Advocates of recertifying Indian Point include former New York City mayors Michael Bloomberg and Rudolph W. Giuliani. Bloomberg says that “Indian Point is critical to the city’s economic viability”.[89] The New York Independent System Operator maintains that in the absence of Indian Point, grid voltages would degrade, which would limit the ability to transfer power from upstate New York resources through the Hudson Valley to New York City.[90]
As the current governor, Andrew Cuomo continues to call for closure of Indian Point.[91] In late June 2011, a Cuomo advisor in a meeting with Entergy executives informed them for the first time directly of the Governor’s intention to close the plant, while the legislature approved a bill to streamline the process of siting replacement plants.[92]
Nuclear energy industry figures and analysts responded to Cuomo’s initiative by questioning whether replacement electrical plants could be certified and built rapidly enough to replace Indian Point, given New York state’s “cumbersome regulation process”, and also noted that replacement power from out of state sources will be hard to obtain because New York has weak ties to generation capacity in other states.[citation needed] They said that possible consequences of closure will be a sharp increase in the cost of electricity for downstate users and even “rotating black-outs”.[93]
Several members of the House of Representatives representing districts near the plant have also opposed recertification, including Democrats Nita Lowey, Maurice Hinchey, and Eliot Engel and then Republican member Sue Kelly.[94]
In November 2016 the New York Court of Appeals ruled that the application to renew the NRC operating licences must be reviewed against the state’s coastal management program, which The New York State Department of State had already decided was inconsistent with coastal management requirements. Entergy has filed a lawsuit regarding the validity of Department of State’s decision.[95]
Closure
Beginning at the end of 2015, Governor Cuomo began to ramp up political action against the Indian Point facility, opening investigations with the state public utility commission, the department of health and the department of environmental conservation.[33][34][35][30][36][37] To put the public service commission investigation in perspective, most electric outage investigations conducted by the commission are in response to outages with a known number of affected retail electric customers.[38] By November 17, 2017, the NYISO accepted Indian Point’s retirement notice.[39]
In January 2017, the governor’s office announced closure by 2020-21.[96] The closure, along with pollution control, challenges New York’s ability to be supplied.[citation needed] Among the solution proposals are storage, renewables (solar and wind), a new transmission cables from Canada [97][98] and a 650MW natural gas plant located in Wawayanda, New York.[99] There was also a 1,000 MW merchant HVDC transmission line proposed in 2013 to the public service commission that would have interconnected at Athens, New York and Buchanan, New York, however this project was indefinitely stalled when its proposed southern converter station site was bought by the Town of Cortlandt in a land auction administered by Con Edison.[100][101][102] As of October 1, 2018, the 650 MW plant built in Wawayanda, New York, by CPV Valley, is operating commercially.[103] The CPV Valley plant has been associated with Governor Cuomo’s close aid, Joe Percoco, and the associated corruption trial.[104] Another plant being built, Cricket Valley Energy Center, rated at 1,100 MW, is on schedule to provide energy by 2020 in Dover, New York.[105] An Indian Point contingency plan, initiated in 2012 by the NYSPSC under the administration of Cuomo, solicited energy solutions from which a Transmission Owner Transmission Solutions (TOTS) plan was selected. The TOTS projects provide 450 MW[106] of additional transfer capability across a NYISO defined electric transmission corridor in the form of three projects: series compensation at a station in Marcy, New York, reconductoring a transmission line, adding an additional transmission line, and “unbottling” Staten Island capacity. These projects, with the exception of part of the Staten Island “unbottling” were in service by mid-2016. The cost of the TOTS projects are distributed among various utilities in their rate cases before the public service commission and the cost allocation amongst themselves was approved by FERC. NYPA and LIPA are also receiving a portion. The cost of the TOTS projects has been estimated in the range of $27 million to $228 million.[107][108][109][110][111] An energy highway initiative was also prompted by this order (generally speaking, additional lines on the Edic-Pleasant Valley and the Oakdale-Fraser transmission corridors) which is still going through the regulatory process in both the NYISO and NYSPSC.

Under the current plan, one reactor is scheduled to be shut down in April 2020 and the second by April 2021.[112] A report by the New York Building Congress, a construction industry association, has said that NYC will need additional natural gas pipelines to accommodate the city’s increasing demand for energy. Environmentalists have argued that the power provided by Indian point can be replaced by renewable energy, combined with conservation measures and improvements to the efficiency of the electrical grid.[113] 

Tuesday, May 30, 2023

Quakeland: On the Road to America’s Next Devastating Earthquake: Revelation 6

       

Quakeland: On the Road to America’s Next Devastating Earthquake
Roger BilhamQuakeland: New York and the Sixth Seal (Revelation 6:12)
Given recent seismic activity — political as well as geological — it’s perhaps unsurprising that two books on earthquakes have arrived this season. One is as elegant as the score of a Beethoven symphony; the other resembles a diary of conversations overheard during a rock concert. Both are interesting, and both relate recent history to a shaky future.
Journalist Kathryn Miles’s Quakeland is a litany of bad things that happen when you provoke Earth to release its invisible but ubiquitous store of seismic-strain energy, either by removing fluids (oil, water, gas) or by adding them in copious quantities (when extracting shale gas in hydraulic fracturing, also known as fracking, or when injecting contaminated water or building reservoirs). To complete the picture, she describes at length the bad things that happen during unprovoked natural earthquakes. As its subtitle hints, the book takes the form of a road trip to visit seismic disasters both past and potential, and seismologists and earthquake engineers who have first-hand knowledge of them. Their colourful personalities, opinions and prejudices tell a story of scientific discovery and engineering remedy.
Miles poses some important societal questions. Aside from human intervention potentially triggering a really damaging earthquake, what is it actually like to live in neighbourhoods jolted daily by magnitude 1–3 earthquakes, or the occasional magnitude 5? Are these bumps in the night acceptable? And how can industries that perturb the highly stressed rocks beneath our feet deny obvious cause and effect? In 2015, the Oklahoma Geological Survey conceded that a quadrupling of the rate of magnitude-3 or more earthquakes in recent years, coinciding with a rise in fracking, was unlikely to represent a natural process. Miles does not take sides, but it’s difficult for the reader not to.
She visits New York City, marvelling at subway tunnels and unreinforced masonry almost certainly scheduled for destruction by the next moderate earthquake in the vicinity. She considers the perils of nuclear-waste storage in Nevada and Texas, and ponders the risks to Idaho miners of rock bursts — spontaneous fracture of the working face when the restraints of many million years of confinement are mined away. She contemplates the ups and downs of the Yellowstone Caldera — North America’s very own mid-continent supervolcano — and its magnificently uncertain future. Miles also touches on geothermal power plants in southern California’s Salton Sea and elsewhere; the vast US network of crumbling bridges, dams and oil-storage farms; and the magnitude 7–9 earthquakes that could hit California and the Cascadia coastline of Oregon and Washington state this century. Amid all this doom, a new elementary school on the coast near Westport, Washington, vulnerable to inbound tsunamis, is offered as a note of optimism. With foresight and much persuasion from its head teacher, it was engineered to become an elevated safe haven.
Miles briefly discusses earthquake prediction and the perils of getting it wrong (embarrassment in New Madrid, Missouri, where a quake was predicted but never materialized; prison in L’Aquila, Italy, where scientists failed to foresee a devastating seismic event) and the successes of early-warning systems, with which electronic alerts can be issued ahead of damaging seismic waves. Yes, it’s a lot to digest, but most of the book obeys the laws of physics, and it is a engaging read. One just can’t help wishing that Miles’s road trips had taken her somewhere that wasn’t a disaster waiting to happen.
Catastrophic damage in Anchorage, Alaska, in 1964, caused by the second-largest earthquake in the global instrumental record.
In The Great Quake, journalist Henry Fountain provides us with a forthright and timely reminder of the startling historical consequences of North America’s largest known earthquake, which more than half a century ago devastated southern Alaska. With its epicentre in Prince William Sound, the 1964 quake reached magnitude 9.2, the second largest in the global instrumental record. It released more energy than either the 2004 Sumatra–Andaman earthquake or the 2011 Tohoku earthquake off Japan; and it generated almost as many pages of scientific commentary and description as aftershocks. Yet it has been forgotten by many.
The quake was scientifically important because it occurred at a time when plate tectonics was in transition from hypothesis to theory. Fountain expertly traces the theory’s historical development, and how the Alaska earthquake was pivotal in nailing down one of the most important predictions. The earthquake caused a fjordland region larger than England to subside, and a similarly huge region of islands offshore to rise by many metres; but its scientific implications were not obvious at the time. Eminent seismologists thought that a vertical fault had slipped, drowning forests and coastlines to its north and raising beaches and islands to its south. But this kind of fault should have reached the surface, and extended deep into Earth’s mantle. There was no geological evidence of a monster surface fault separating these two regions, nor any evidence for excessively deep aftershocks. The landslides and liquefied soils that collapsed houses, and the tsunami that severely damaged ports and infrastructure, offered no clues to the cause.
“Previous earthquakes provide clear guidance about present-day vulnerability.” The hero of The Great Quake is the geologist George Plafker, who painstakingly mapped the height reached by barnacles lifted out of the intertidal zone along shorelines raised by the earthquake, and documented the depths of drowned forests. He deduced that the region of subsidence was the surface manifestation of previously compressed rocks springing apart, driving parts of Alaska up and southwards over the Pacific Plate. His finding confirmed a prediction of plate tectonics, that the leading edge of the Pacific Plate plunged beneath the southern edge of Alaska along a gently dipping thrust fault. That observation, once fully appreciated, was applauded by the geophysics community.
Fountain tells this story through the testimony of survivors, engineers and scientists, interweaving it with the fascinating history of Alaska, from early discovery by Europeans to purchase from Russia by the United States in 1867, and its recent development. Were the quake to occur now, it is not difficult to envisage that with increased infrastructure and larger populations, the death toll and price tag would be two orders of magnitude larger than the 139 fatalities and US$300-million economic cost recorded in 1964.
What is clear from these two books is that seismicity on the North American continent is guaranteed to deliver surprises, along with unprecedented economic and human losses. Previous earthquakes provide clear guidance about the present-day vulnerability of US infrastructure and populations. Engineers and seismologists know how to mitigate the effects of future earthquakes (and, in mid-continent, would advise against the reckless injection of waste fluids known to trigger earthquakes). It is merely a matter of persuading city planners and politicians that if they are tempted to ignore the certainty of the continent’s seismic past, they should err on the side of caution when considering its seismic future.

Monday, May 29, 2023

Preparing for the Sixth Seal (Revelation 6:12)

     

Scenario Earthquakes for Urban Areas Along the Atlantic Seaboard of the United States
NYCEM

The Sixth Seal: NY City Destroyed

If today a magnitude 6 earthquake were to occur centered on New York City, what would its effects be? Will the loss be 10 or 100 billion dollars? Will there be 10 or 10,000 fatalities? Will there be 1,000 or 100,000 homeless needing shelter? Can government function, provide assistance, and maintain order?

At this time, no satisfactory answers to these questions are available. A few years ago, rudimentary scenario studies were made for Boston and New York with limited scope and uncertain results. For most eastern cities, including Washington D.C., we know even less about the economic, societal and political impacts from significant earthquakes, whatever their rate of occurrence.

Why do we know so little about such vital public issues? Because the public has been lulled into believing that seriously damaging quakes are so unlikely in the east that in essence we do not need to consider them. We shall examine the validity of this widely held opinion.

Is the public’s earthquake awareness (or lack thereof) controlled by perceived low SeismicitySeismic Hazard, or Seismic Risk? How do these three seismic features differ from, and relate to each other? In many portions of California, earthquake awareness is refreshed in a major way about once every decade (and in some places even more often) by virtually every person experiencing a damaging event. The occurrence of earthquakes of given magnitudes in time and space, not withstanding their effects, are the manifestations of seismicity. Ground shaking, faulting, landslides or soil liquefaction are the manifestations of seismic hazard. Damage to structures, and loss of life, limb, material assets, business and services are the manifestations of seismic risk. By sheer experience, California’s public understands fairly well these three interconnected manifestations of the earthquake phenomenon. This awareness is reflected in public policy, enforcement of seismic regulations, and preparedness in both the public and private sector. In the eastern U.S., the public and its decision makers generally do not understand them because of inexperience. Judging seismic risk by rates of seismicity alone (which are low in the east but high in the west) has undoubtedly contributed to the public’s tendency to belittle the seismic loss potential for eastern urban regions.

Let us compare two hypothetical locations, one in California and one in New York City. Assume the location in California does experience, on average, one M = 6 every 10 years, compared to New York once every 1,000 years. This implies a ratio of rates of seismicity of 100:1. Does that mean the ratio of expected losses (when annualized per year) is also 100:1? Most likely not. That ratio may be closer to 10:1, which seems to imply that taking our clues from seismicity alone may lead to an underestimation of the potential seismic risks in the east. Why should this be so?

To check the assertion, let us make a back-of-the-envelope estimate. The expected seismic risk for a given area is defined as the area-integrated product of: seismic hazard (expected shaking level), assets ($ and people), and the assets’ vulnerabilities (that is, their expected fractional loss given a certain hazard – say, shaking level). Thus, if we have a 100 times lower seismicity rate in New York compared to California, which at any given point from a given quake may yield a 2 times higher shaking level in New York compared to California because ground motions in the east are known to differ from those in the west; and if we have a 2 times higher asset density (a modest assumption for Manhattan!), and a 2 times higher vulnerability (again a modest assumption when considering the large stock of unreinforced masonry buildings and aged infrastructure in New York), then our California/New York ratio for annualized loss potential may be on the order of (100/(2x2x2)):1. That implies about a 12:1 risk ratio between the California and New York location, compared to a 100:1 ratio in seismicity rates.

From this example it appears that seismic awareness in the east may be more controlled by the rate of seismicity than by the less well understood risk potential. This misunderstanding is one of the reasons why earthquake awareness and preparedness in the densely populated east is so disproportionally low relative to its seismic loss potential. Rare but potentially catastrophic losses in the east compete in attention with more frequent moderate losses in the west. New York City is the paramount example of a low-probability, high-impact seismic risk, the sort of risk that is hard to insure against, or mobilize public action to reduce the risks.

There are basically two ways to respond. One is to do little and wait until one or more disastrous events occur. Then react to these – albeit disastrous – “windows of opportunity.” That is, pay after the unmitigated facts, rather than attempt to control their outcome. This is a high-stakes approach, considering the evolved state of the economy. The other approach is to invest in mitigation ahead of time, and use scientific knowledge and inference, education, technology transfer, and combine it with a mixture of regulatory and/or economic incentives to implement earthquake preparedness. The National Earthquake Hazard Reduction Program (NEHRP) has attempted the latter while much of the public tends to cling to the former of the two options. Realistic and reliable quantitative loss estimation techniques are essential to evaluate the relative merits of the two approaches.

The current efforts in the eastern U.S., including New York City, to start the enforcement of seismic building codes for new constructions are important first steps in the right direction. Similarly, the emerging efforts to include seismic rehabilitation strategies in the generally needed overhaul of the cities’ aged infrastructures such as bridges, water, sewer, power and transportation is commendable and needs to be pursued with diligence and persistence. But at the current pace of new construction replacing older buildings and lifelines, it will take many decades or a century before a major fraction of the stock of built assets will become seismically more resilient than the current inventory is. For some time, this leaves society exposed to very high seismic risks. The only consolation is that seismicity on average is low, and, hence with some luck, the earthquakes will not outpace any ongoing efforts to make eastern cities more earthquake resilient gradually. Nevertheless, M = 5 to M = 6 earthquakes at distances of tens of km must be considered a credible risk at almost any time for cities like Boston, New York or Philadelphia. M = 7 events, while possible, are much less likely; and in many respects, even if building codes will have affected the resilience of a future improved building stock, M = 7 events would cause virtually unmanageable situations. Given these bleak prospects, it will be necessary to focus on crucial elements such as maintaining access to cities by strengthening critical bridges, improving the structural and nonstructural performance of hospitals, and having a nationally supported plan how to assist a devastated region in case of a truly severe earthquake. No realistic and coordinated planning of this sort exists at this time for most eastern cities.

The current efforts by the Federal Emergency Management Administration (FEMA) via the National Institute of Building Sciences (NIBS) to provide a standard methodology (RMS, 1994) and planning tools for making systematic, computerized loss estimates for annualized probabilistic calculations as well as for individual scenario events, is commendable. But these new tools provide only a shell with little regional data content. What is needed are the detailed data bases on inventory of buildings and lifelines with their locally specific seismic fragility properties. Similar data are needed for hospitals, shelters, firehouses, police stations and other emergency service providers. Moreover, the soil and rock conditions which control the shaking and soil liquefaction properties for any given event, need to be systematically compiled into Geographical Information System (GIS) data bases so they can be combined with the inventory of built assets for quantitative loss and impact estimates. Even under the best of conceivable funding conditions, it will take years before such data bases can be established so they will be sufficiently reliable and detailed to perform realistic and credible loss scenarios. Without such planning tools, society will remain in the dark as to what it may encounter from a future major eastern earthquake. Given these uncertainties, and despite them, both the public and private sector must develop at least some basic concepts for contingency plans. For instance, the New York City financial service industry, from banks to the stock and bond markets and beyond, ought to consider operational contingency planning, first in terms of strengthening their operational facilities, but also for temporary backup operations until operations in the designated facilities can return to some measure of normalcy. The Federal Reserve in its oversight function for this industry needs to take a hard look at this situation.

A society, whose economy depends increasingly so crucially on rapid exchange of vast quantities of information must become concerned with strengthening its communication facilities together with the facilities into which the information is channeled. In principle, the availability of satellite communication (especially if self-powered) with direct up and down links, provides here an opportunity that is potentially a great advantage over distributed buried networks. Distributed networks for transportation, power, gas, water, sewer and cabled communication will be expensive to harden (or restore after an event).

In all future instances of major capital spending on buildings and urban infrastructures, the incorporation of seismically resilient design principles at all stages of realization will be the most effective way to reduce society’s exposure to high seismic risks. To achieve this, all levels of government need to utilize legislative and regulatory options; insurance industries need to build economic incentives for seismic safety features into their insurance policy offerings; and the private sector, through trade and professional organizations’ planning efforts, needs to develop a healthy self-protective stand. Also, the insurance industry needs to invest more aggressively into broadly based research activities with the objective to quantify the seismic hazards, the exposed assets and their seismic fragilities much more accurately than currently possible. Only together these combined measures may first help to quantify and then reduce our currently untenably large seismic risk exposures in the virtually unprepared eastern cities. Given the low-probability/high-impact situation in this part of the country, seismic safety planning needs to be woven into both the regular capital spending and daily operational procedures. Without it we must be prepared to see little progress. Unless we succeed to build seismic safety considerations into everyday decision making as a normal procedure of doing business, society will lose the race against the unstoppable forces of nature. While we never can entirely win this race, we can succeed in converting unmitigated catastrophes into manageable disasters, or better, tolerable natural events.

Sunday, May 28, 2023

USGS Evidence Shows Power of the Sixth Seal (Revelation 6:12)

   


New Evidence Shows Power of East Coast Earthquakes
Virginia Earthquake Triggered Landslides at Great Distances
Released: 11/6/2012 8:30:00 AM USGS.gov
Earthquake shaking in the eastern United States can travel much farther and cause damage over larger areas than previously thought.
“We used landslides as an example and direct physical evidence to see how far-reaching shaking from east coast earthquakes could be,” said Randall Jibson, USGS scientist and lead author of this study. “Not every earthquake will trigger landslides, but we can use landslide distributions to estimate characteristics of earthquake energy and how far regional ground shaking could occur.”
“Scientists are confirming with empirical data what more than 50 million people in the eastern U.S. experienced firsthand: this was one powerful earthquake,” said USGS Director Marcia McNutt. “Calibrating the distance over which landslides occur may also help us reach back into the geologic record to look for evidence of past history of major earthquakes from the Virginia seismic zone.”
This study will help inform earthquake hazard and risk assessments as well as emergency preparedness, whether for landslides or other earthquake effects.
The research is being presented today at the Geological Society of America conference, and will be published in the December 2012 issue of the Bulletin of the Seismological Society of America.
The USGS found that the farthest landslide from the 2011 Virginia earthquake was 245 km (150 miles) from the epicenter. This is by far the greatest landslide distance recorded from any other earthquake of similar magnitude. Previous studies of worldwide earthquakes indicated that landslides occurred no farther than 60 km (36 miles) from the epicenter of a magnitude 5.8 earthquake.
“What makes this new study so unique is that it provides direct observational evidence from the largest earthquake to occur in more than 100 years in the eastern U.S,” said Jibson. “Now that we know more about the power of East Coast earthquakes, equations that predict ground shaking might need to be revised.”
It is estimated that approximately one-third of the U.S. population could have felt last year’s earthquake in Virginia, more than any earthquake in U.S. history. About 148,000 people reported their ground-shaking experiences caused by the earthquake on the USGS “Did You Feel It?” website. Shaking reports came from southeastern Canada to Florida and as far west as Texas.
In addition to the great landslide distances recorded, the landslides from the 2011 Virginia earthquake occurred in an area 20 times larger than expected from studies of worldwide earthquakes. Scientists plotted the landslide locations that were farthest out and then calculated the area enclosed by those landslides. The observed landslides from last year’s Virginia earthquake enclose an area of about 33,400 km2, while previous studies indicated an expected area of about 1,500 km2from an earthquake of similar magnitude.
“The landslide distances from last year’s Virginia earthquake are remarkable compared to historical landslides across the world and represent the largest distance limit ever recorded,” said Edwin Harp, USGS scientist and co-author of this study. “There are limitations to our research, but the bottom line is that we now have a better understanding of the power of East Coast earthquakes and potential damage scenarios.”
Learn more about the 2011 central Virginia earthquake.

Saturday, May 27, 2023

The History of Earth­quakes In New York Before the Sixth Seal (Revelation 6:12)

           The History of Earth­quakes In New York

By Meteorologist Michael Gouldrick New York State PUBLISHED 6:30 AM ET Sep. 09, 2020 PUBLISHED 6:30 AM EDT Sep. 09, 2020
New York State has a long history of earthquakes. Since the early to mid 1700s there have been over 550 recorded earthquakes that have been centered within the state’s boundary. New York has also been shaken by strong earthquakes that occurred in southeast CaThe History of Earth­quakes In New York Before the Sixth Seal (Revelation 6:12) nada and the Mid-Atlantic states.
Courtesy of Northeast States Emergency Consortium
A school gymnasium suffered major damage, some 90% of chimneys toppled over and house foundations were cracked. Windows broke and plumbing was damaged. This earthquake was felt from Maine to Michigan to Maryland.
Another strong quake occurred near Attica on August 12th, 1929. Chimneys took the biggest hit, foundations were also cracked and store shelves toppled their goods.
Strong earthquakes outside of New York’s boundary have also shaken the state. On February 5th, 1663 near Charlevoix, Quebec, an estimated magnitude of 7.5 occurred. A 6.2 tremor was reported in Western Quebec on November 1st in 1935. A 6.2 earthquake occurred in the same area on March 1st 1925. Many in the state also reported shaking on August 23rd, 2011 from a 5.9 earthquake near Mineral, Virginia.
Earthquakes in the northeast U.S. and southeast Canada are not as intense as those found in other parts of the world but can be felt over a much larger area. The reason for this is the makeup of the ground. In our part of the world, the ground is like a jigsaw puzzle that has been put together. If one piece shakes, the whole puzzle shakes.
In the Western U.S., the ground is more like a puzzle that hasn’t been fully put together yet. One piece can shake violently, but only the the pieces next to it are affected while the rest of the puzzle doesn’t move.
In Rochester, New York, the most recent earthquake was reported on March 29th, 2020. It was a 2.6 magnitude shake centered under Lake Ontario. While most did not feel it, there were 54 reports of the ground shaking.
So next time you are wondering why the dishes rattled, or you thought you felt the ground move, it certainly could have been an earthquake in New York.
Here is a website from the USGS (United Sates Geologic Society) of current earthquakes greater than 2.5 during the past day around the world. As you can see, the Earth is a geologically active planet!
Another great website of earthquakes that have occurred locally can be found here.
To learn more about the science behind earthquakes, check out this website from the USGS.

Friday, May 26, 2023

Two Centuries Before The Sixth Seal (Revelation 6:12)

           

The worst earthquake in Massachusetts history 260 years ago
It happened before, and it could happen again.
By Hilary Sargent @lilsarg
Boston.com Staff | 11.19.15 | 5:53 AM
On November 18, 1755, Massachusetts experienced its largest recorded earthquake.
The earthquake occurred in the waters off Cape Ann, and was felt within seconds in Boston, and as far away as Nova Scotia, the Chesapeake Bay, and upstate New York, according to the U.S. Geological Survey.
Seismologists have since estimated the quake to have been between 6.0 and 6.3 on the Richter scale, according to the Massachusetts Historical Society.
While there were no fatalities, the damage was extensive.
According to the USGS, approximately 100 chimneys and roofs collapsed, and over a thousand were damaged.
The worst damage occurred north of Boston, but the city was not unscathed.
A 1755 report in The Philadelphia Gazette described the quake’s impact on Boston:
“There was at first a rumbling noise like low thunder, which was immediately followed with such a violent shaking of the earth and buildings, as threw every into the greatest amazement, expecting every moment to be buried in the ruins of their houses. In a word, the instances of damage done to our houses and chimnies are so many, that it would be endless to recount them.”
The quake sent the grasshopper weathervane atop Faneuil Hall tumbling to the ground, according to the Massachusetts Historical Society.
An account of the earthquake, published in The Pennsylvania Gazette on December 4, 1755.
The earthquake struck at 4:30 in the morning, and the shaking lasted “near four minutes,” according to an entry John Adams, then 20, wrote in his diary that day.
The brief diary entry described the damage he witnessed.
“I was then at my Fathers in Braintree, and awoke out of my sleep in the midst of it,” he wrote. “The house seemed to rock and reel and crack as if it would fall in ruins about us. 7 Chimnies were shatter’d by it within one mile of my Fathers house.”
The shaking was so intense that the crew of one ship off the Boston coast became convinced the vessel had run aground, and did not learn about the earthquake until they reached land, according to the Massachusetts Historical Society.
In 1832, a writer for the Hampshire (Northampton) Gazette wrote about one woman’s memories from the quake upon her death.
“It was between 4 and 5 in the morning, and the moon shone brightly. She and the rest of the family were suddenly awaked from sleep by a noise like that of the trampling of many horses; the house trembled and the pewter rattled on the shelves. They all sprang out of bed, and the affrightted children clung to their parents. “I cannot help you dear children,” said the good mother, “we must look to God for help.”
The Cape Ann earthquake came just 17 days after an earthquake estimated to have been 8.5-9.0 on the Richter scale struck in Lisbon, Portugal, killing at least 60,000 and causing untold damage.
There was no shortage of people sure they knew the impretus for the Cape Ann earthquake.
According to many ministers in and around Boston, “God’s wrath had brought this earthquake upon Boston,” according to the Massachusetts Historical Society.
In “Verses Occasioned by the Earthquakes in the Month of November, 1755,” Jeremiah Newland, a Taunton resident who was active in religious activities in the Colony, wrote that the earthquake was a reminder of the importance of obedience to God.
“It is becaufe we broke thy Laws,
that thou didst shake the Earth.

O what a Day the Scriptures say,
the EARTHQUAKE doth foretell;
O turn to God; lest by his Rod,
he cast thee down to Hell.”
Boston Pastor Jonathan Mayhew warned in a sermon that the 1755 earthquakes in Massachusetts and Portugal were “judgments of heaven, at least as intimations of God’s righteous displeasure, and warnings from him.”
There were some, though, who attempted to put forth a scientific explanation for the earthquake.
Well, sort of.
In a lecture delivered just a week after the earthquake, Harvard mathematics professor John Winthrop said the quake was the result of a reaction between “vapors” and “the heat within the bowels of the earth.” But even Winthrop made sure to state that his scientific theory “does not in the least detract from the majesty … of God.”
It has been 260 years since the Cape Ann earthquake. Some experts, including Boston College seismologist John Ebel, think New England could be due for another significant quake.
In a recent Boston Globe report, Ebel said the New England region “can expect a 4 to 5 magnitude quake every decade, a 5 to 6 every century, and a magnitude 6 or above every thousand years.”
If the Cape Ann earthquake occurred today, “the City of Boston could sustain billions of dollars of earthquake damage, with many thousands injured or killed,” according to a 1997 study by the US Army Corps of Engineers.

Thursday, May 25, 2023

The Sixth Seal: More Than Just Manhattan (Revelation 6:12)

  

New York, NY – In a Quake, Brooklyn Would Shake More Than Manhattan
By Brooklyn Eagle
New York, NY – The last big earthquake in the New York City area, centered in New York Harbor just south of Rockaway, took place in 1884 and registered 5.2 on the Richter Scale.Another earthquake of this size can be expected and could be quite damaging, says Dr. Won-Young Kim, senior research scientist at the Lamont-Doherty Earth Observatory of Columbia University.
And Brooklyn, resting on sediment, would shake more than Manhattan, built on solid rock. “There would be more shaking and more damage,” Dr. Kim told the Brooklyn Eagle on Wednesday.
If an earthquake of a similar magnitude were to happen today near Brooklyn, “Many chimneys would topple. Poorly maintained buildings would fall down – some buildings are falling down now even without any shaking. People would not be hit by collapsing buildings, but they would be hit by falling debris. We need to get some of these buildings fixed,” he said.
But a 5.2 is “not comparable to Haiti,” he said. “That was huge.” Haiti’s devastating earthquake measured 7.0.
Brooklyn has a different environment than Haiti, and that makes all the difference, he said. Haiti is situated near tectonic plate.
“The Caribbean plate is moving to the east, while the North American plate is moving towards the west. They move about 20 mm – slightly less than an inch – every year.” The plates are sliding past each other, and the movement is not smooth, leading to jolts, he said.
While we don’t have the opportunity for a large jolt in Brooklyn, we do have small, frequent quakes of a magnitude of 2 or 3 on the Richter Scale. In 2001 alone the city experienced two quakes: one in January, measuring 2.4, and one in October, measuring 2.6. The October quake, occurring soon after Sept. 11 terrorist attacks, “caused a lot of panic,” Dr. Kim said.
“People ask me, ‘Should I get earthquake insurance?’ I tell them no, earthquake insurance is expensive. Instead, use that money to fix chimneys and other things. Rather than panicky preparations, use common sense to make things better.”
Secure bookcases to the wall and make sure hanging furniture does not fall down, Dr. Kim said. “If you have antique porcelains or dishes, make sure they’re safely stored. In California, everything is anchored to the ground.”
While a small earthquake in Brooklyn may cause panic, “In California, a quake of magnitude 2 is called a micro-quake,” he added.

Indian Point Pipeline is NOT Safe (Revelation 6:12)

  

Demonstrators protest the pipeline near Indian Point in August 2016. (Photo by Erik McGregor)
In February 2016, New York Gov. Andrew Cuomo commissioned a study of the risks of running a gas pipeline through the Indian Point nuclear plant site. Seven months later, the state told the consulting firm preparing the $275,000 assessment to complete it by Dec. 31, 2016.
More than a year after that deadline, the study hasn’t been released and its status remains unclear. [Editor’s note: In June the state released the executive summary of the report.]
After repeated efforts to pry loose the document through Freedom of Information Law requests, activists are urging Cuomo and local officials to do something. Stop the Algonquin Pipeline Expansion (SAPE), formed as the pipeline plans took shape, is among the groups that will take part in an “interfaith climate vigil” for Feb. 25 outside Cuomo’s Mount Kisco home.
Known as the Algonquin Incremental Market (AIM) project, the 42-inch pipeline began operation in January 2017 despite opposition from environmentalists and scientists who argued that a high-pressure pipe cannot be safely snaked through 2,300 feet of a nuclear power complex, much less one, like Indian Point, in an earthquake fault.
Although Indian Point is scheduled to close by spring 2021, critics contend that dangers of a pipeline accident will remain because spent radioactive fuel will be stored at the facility indefinitely.
Constructed by Spectra Energy, AIM is a link in a system to carry natural gas from the Marcellus Shale formation in Pennsylvania into New York, beneath the Hudson River, and across Putnam County into Connecticut, Massachusetts and Rhode Island. The Federal Energy Regulatory Commission approved the pipeline, although critics contend that its decision was based on erroneous data.
On Feb. 1, Philipstown resident Paula Clair asked the Town Board to call for the study to be released, saying that “we who live close to the nuclear plant have a right to know” of the hazards. Clair, who sits on the town’s Zoning Board of Appeals, said that the proximity of the gas pipeline to spent nuclear fuel means that “if there was an explosion or a fire, it would be a catastrophe.”
A draft resolution she proposed noted that a radioactive release caused by an explosion could “render Philipstown uninhabitable for generations.”
Philipstown Supervisor Richard Shea agreed that the study, paid for with taxpayer funds, should be released, and promised that the board would consider passing a measure soon. “I don’t think it’s going to be a problem” approving it, he said.
Susan Van Dolsen, co-founder of SAPE, said her organization has been attempting to get a copy of the study through FOIL and other means since mid-2016, without success. Instead of the study, the state sent stacks of emails and other items, often of dubious relevance, she said, with large portions blacked out.
Sandy Galef, who represents Philipstown and Beacon in the state Assembly and serves on the task force looking at the impact of Indian Point’s closure, also wants the assessment released.
In a Jan. 19 letter to Cuomo, she reminded the governor that she had previously asked to see the document, which, she said, becomes especially important as the task force looks at possible re-uses of Indian Point after its nuclear operations cease. “I don’t think we can move forward without all possible information,” she wrote.
As of Thursday (Feb. 22), the governor’s office had not responded to questions posed a week earlier by The Current about the study. The state Office of General Services, which oversaw the contract for the study, on Feb. 14 referred inquiries to the state Division of Homeland Security and Emergency Services, which also did not respond.