Tuesday, November 29, 2022

The Sixth Seal by Nostradamus (Revelation 6:12)

 


The Sixth Seal by Nostradamus
To Andrew the Prophet
Completed February 5, 2008
Nostradamus and the New City
Les Propheties
(Century 1 Quatrain 27)
Michel de Nostredame Earth-shaking fire from the center of the earth.Will cause the towers around the New City to shake,Two great rocks for a long time will make war, And then Arethusa will color a new river red.(And then areth USA will color a new river red.) Earth-shaking fire from the center of the earth.Will cause the towers around the New City to shake,Two great rocks for a long time will make war
There is recent scientific evidence from drill core sampling in Manhattan, that the southern peninsula is overlapped by several tectonic plates. Drill core sampling has been taken from regions south of Canal Street including the Trade Towers’ site. Of particular concern is that similar core samples have been found across the East River in Brooklyn. There are also multiple fault lines along Manhattan correlating with north-northwest and northwest trending neo-tectonic activity. And as recently as January and October of 2001, New York City has sustained earthquakes along these plates. For there are “two great rocks” or tectonic plates that shear across Manhattan in a northwestern pattern. And these plates “for a longtime will make war”, for they have been shearing against one other for millions of years. And on January 3 of 2010, when they makewar with each other one last time, the sixth seal shall be opened, and all will know that the end is near.
And then Arethusa will color a new river red.
Arethusa is a Greek mythological figure, a beautiful huntress and afollower of the goddess Artemis. And like Artemis, Arethusa would have nothing to do with me; rather she loved to run and hunt in the forest. But one day after an exhausting hunt, she came to a clear crystal stream and went in it to take a swim. She felt something from beneath her, and frightened she scampered out of the water. A voice came from the water, “Why are you leaving fair maiden?” She ran into the forest to escape, for the voice was from Alpheus, the god of the river. For he had fallen in love with her and became a human to give chase after her. Arethusa in exhaustion called out to Artemis for help, and the goddess hid her by changing her into a spring.But not into an ordinary spring, but an underground channel that traveled under the ocean from Greece to Sicily. But Alpheus being the god of the river, converted back into water and plunged downthe same channel after Arethusa. And thus Arethusa was captured by Artemis, and their waters would mingle together forever. And of great concern is that core samples found in train tunnels beneath the Hudson River are identical to those taken from southern Manhattan. Furthermore, several fault lines from the 2001 earthquakes were discovered in the Queen’s Tunnel Complex, NYC Water Tunnel #3. And a few years ago, a map of Manhattan drawn up in 1874 was discovered, showing a maze of underground waterways and lakes. For Manhattan was once a marshland and labyrinth of underground streams. Thus when the sixth seal is broken, the subways of the New City shall be flooded be Arethusa:the waters from the underground streams and the waters from the sea. And Arethusa shall be broken into two. And then Arethusa will color a new river red.
And then areth USA will color a new river red.
For Arethusa broken into two is areth USA. For areth (αρετη) is the Greek word for values. But the values of the USA are not based on morality, but on materialism and on wealth. Thus when the sixth seal is opened, Wall Street and our economy shall crash and “arethUSA”, the values of our economy shall fall “into the red.” “Then the kings of the earth and the great men and the commanders and the rich and the strong and every slave and free man hid themselves in the caves and among the rocks of the mountains; and they said to the mountains and to the rocks, ‘Fall on us and hide us from the presence of Him who sits on the throne, and from the wrath of the Lamb; for the great day of their wrath has come, and who is able to stand?’” (Revelation 6:15-17)

Monday, November 28, 2022

The Indian Point Plant Will Be Our Fukushima At The 6th Seal

 


© Toru Hanai

Nuclear threats in US worse than previously known — study

Conflicting with a prior industry study, a new analysis claims 96 nuclear facilities in the US are less safe than reported, citing risks such as terrorism and sabotage. The study says there remain lessons to be learned from the Fukushima disaster.
 
Neglect of the risks posed by used reactor fuel, or spent nuclear fuel, contained in 96 aboveground, aquamarine pools could cost the US economy $700 billion, cause cancer in tens of thousands of people as well as compel the relocation of some 3.5 million people from an area larger than New Jersey, a study released May 20 finds.

The National Academies of Sciences, Engineering, and Medicine’s study, ‘Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of US Nuclear Plants,’ is the second installment of a two-part study ordered by Congress on the 2011 Fukushima Daiichi nuclear disaster in Japan. It not only cites, but also outright challenges a 2014 study by the Nuclear Regulatory Commission, the US industry’s regulator and enforcer of safety standards.

The spent fuel, The Academies’ study recommends, is safer in dry casks rather than pools, because of the risk of leaks, drawing water away from the irradiated nuclear rods. An accident, terrorist attack or malicious employee all pose greater dangers to the pools, the study says.

Aside from calling on the Nuclear Regulatory Commission to offer a better evaluation of the health risks posed, The Academies study conducted by 17 engineers, nuclear physicists and other scientists demands the commission fulfill a 10-year-old promise to put together an impartial review of the surveillance and security policies on spent nuclear fuel.

“Even with the recommendations that the Academies’ board has put together,” Nuclear Regulatory Commission spokesman Scott Burnell responded, “we continue to conclude that spent fuel is being stored safely and securely in the US.”

“Nothing in the report causes immediate concern,” Burnell added, although the commission is planning a more formal follow-up later this year, according to The Center for Public Integrity.
Congress felt compelled to fund the study on Japan’s natural-turned-nuclear disaster to help prevent a similar accident from occurring in the US. On March 11, 2011, the Daiichi nuclear plant in Fukushima was thrashed by an earthquake and tsunami, leaving three reactors without power or coolants, which resulted in their radioactive cores melting down.

Pure luck kept the disaster from becoming even worse, The Acadamies found. Instead of Daiichi’s highly radioactive rods being exposed to oxygen, which would have sent over 13 million people packing from as far as 177 miles south in Tokyo, a leak happened to be situated between a fuel rod pool and a reactor core, which sent just enough coolant to keep the vulnerable rods from rising above the water. In the end, 470,000 people were evacuated and the still ongoing cleanup is estimated to cost about $93 billion.

The Nuclear Regulatory Commission’s 2014 study put the highest odds of an earthquake happening near spent fuel storage at one in 10 million years, boasting that “spent fuel pools are likely to withstand severe earthquakes without leaking,” while the odds of a terrorist attack or internal subversion were deemed incalculable and left out of any risk assessment.

Calling that cost-benefit analysis “deeply flawed,” The Academies panel member Frank von Hippel, also an emeritus professor and senior research physicist at Princeton University, complained that the commission’s study also left out the impact on property contamination in a 50-mile radius of an accident, tourism rates and the economy, The Center for Public Integrity reported.

The new analysis also calls for new officially designated risk assessments of safety and financial impacts at the federal level as well as what improvements aboveground dry casks may bring compared to pools. The latter is estimated to cost upwards of $4 billion by the industry.

Sunday, November 27, 2022

History Says Expect The Sixth Seal In New York (Revelation 6:12)

  image-8



According to the New York Daily News, Lynn Skyes, lead author of a recent study by seismologists at the Lamont-Doherty Earth Observatory adds that a magnitude-6 quake hits the area about every 670 years, and magnitude-7 every 3,400 years.
A 5.2-magnitude quake shook New York City in 1737 and another of the same severity hit in 1884.
Tremors were felt from Maine to Virginia.
There are several fault lines in the metro area, including one along Manhattan’s 125th St. – which may have generated two small tremors in 1981 and may have been the source of the major 1737 earthquake, says Armbruster.
“The problem here comes from many subtle faults,” explained Skyes after the study was published.
He adds: “We now see there is earthquake activity on them. Each one is small, but when you add them up, they are probably more dangerous than we thought.”
Armbruster says a 5.0-magnitude earthquake today likely would result in casualties and hundreds of millions of dollars in damage.
“I would expect some people to be killed,” he notes.
The scope and scale of damage would multiply exponentially with each additional tick on the Richter scale. (ANI)

Friday, November 25, 2022

Economic Consequences of the Sixth Seal (Revelation 6:12)

 


Scenario Earthquakes for Urban Areas Along the Atlantic Seaboard of the United States

NYCEM.org

If today a magnitude 6 earthquake were to occur centered on New York City, what would its effects be? Will the loss be 10 or 100 billion dollars? Will there be 10 or 10,000 fatalities? Will there be 1,000 or 100,000 homeless needing shelter? Can government function, provide assistance, and maintain order?
At this time, no satisfactory answers to these questions are available. A few years ago, rudimentary scenario studies were made for Boston and New York with limited scope and uncertain results. For most eastern cities, including Washington D.C., we know even less about the economic, societal and political impacts from significant earthquakes, whatever their rate of occurrence.
Why do we know so little about such vital public issues? Because the public has been lulled into believing that seriously damaging quakes are so unlikely in the east that in essence we do not need to consider them. We shall examine the validity of this widely held opinion.
Is the public’s earthquake awareness (or lack thereof) controlled by perceived low Seismicity, Seismic Hazard, or Seismic Risk? How do these three seismic features differ from, and relate to each other? In many portions of California, earthquake awareness is refreshed in a major way about once every decade (and in some places even more often) by virtually every person experiencing a damaging event. The occurrence of earthquakes of given magnitudes in time and space, not withstanding their effects, are the manifestations of seismicity. Ground shaking, faulting, landslides or soil liquefaction are the manifestations of seismic hazard. Damage to structures, and loss of life, limb, material assets, business and services are the manifestations of seismic risk. By sheer experience, California’s public understands fairly well these three interconnected manifestations of the earthquake phenomenon. This awareness is reflected in public policy, enforcement of seismic regulations, and preparedness in both the public and private sector. In the eastern U.S., the public and its decision makers generally do not understand them because of inexperience. Judging seismic risk by rates of seismicity alone (which are low in the east but high in the west) has undoubtedly contributed to the public’s tendency to belittle the seismic loss potential for eastern urban regions.
Let us compare two hypothetical locations, one in California and one in New York City. Assume the location in California does experience, on average, one M = 6 every 10 years, compared to New York once every 1,000 years. This implies a ratio of rates of seismicity of 100:1. Does that mean the ratio of expected losses (when annualized per year) is also 100:1? Most likely not. That ratio may be closer to 10:1, which seems to imply that taking our clues from seismicity alone may lead to an underestimation of the potential seismic risks in the east. Why should this be so?
To check the assertion, let us make a back-of-the-envelope estimate. The expected seismic risk for a given area is defined as the area-integrated product of: seismic hazard (expected shaking level), assets ($ and people), and the assets’ vulnerabilities (that is, their expected fractional loss given a certain hazard – say, shaking level). Thus, if we have a 100 times lower seismicity rate in New York compared to California, which at any given point from a given quake may yield a 2 times higher shaking level in New York compared to California because ground motions in the east are known to differ from those in the west; and if we have a 2 times higher asset density (a modest assumption for Manhattan!), and a 2 times higher vulnerability (again a modest assumption when considering the large stock of unreinforced masonry buildings and aged infrastructure in New York), then our California/New York ratio for annualized loss potential may be on the order of (100/(2x2x2)):1. That implies about a 12:1 risk ratio between the California and New York location, compared to a 100:1 ratio in seismicity rates.
From this example it appears that seismic awareness in the east may be more controlled by the rate of seismicity than by the less well understood risk potential. This misunderstanding is one of the reasons why earthquake awareness and preparedness in the densely populated east is so disproportionally low relative to its seismic loss potential. Rare but potentially catastrophic losses in the east compete in attention with more frequent moderate losses in the west. New York City is the paramount example of a low-probability, high-impact seismic risk, the sort of risk that is hard to insure against, or mobilize public action to reduce the risks.
There are basically two ways to respond. One is to do little and wait until one or more disastrous events occur. Then react to these – albeit disastrous – “windows of opportunity.” That is, pay after the unmitigated facts, rather than attempt to control their outcome. This is a high-stakes approach, considering the evolved state of the economy. The other approach is to invest in mitigation ahead of time, and use scientific knowledge and inference, education, technology transfer, and combine it with a mixture of regulatory and/or economic incentives to implement earthquake preparedness. The National Earthquake Hazard Reduction Program (NEHRP) has attempted the latter while much of the public tends to cling to the former of the two options. Realistic and reliable quantitative loss estimation techniques are essential to evaluate the relative merits of the two approaches.
This paper tries to bring into focus some of the seismological factors which are but one set of variables one needs for quantifying the earthquake loss potential in eastern U.S. urban regions. We use local and global analogs for illustrating possible scenario events in terms of risk. We also highlight some of the few local steps that have been undertaken towards mitigating against the eastern earthquake threat; and discuss priorities for future actions.

Thursday, November 24, 2022

The Sixth Seal: The Big Apple Shake (Revelation 6:12)

    

Image result for new york earthquake


Big Apple shake? Potential for earthquake in New York City exists

NEW YORK CITY (PIX11) – For the last 43 years John Armbruster has been a seismologist with Columbia University’s Lamont Doherty Earth Observatory.  A veteran of what he describes as “a couple of dozen” quakes, he is interested in the seismic activity throughout the Pacific region in recent weeks.
However, does the amount of plate movements around the world in recent weeks as well as years to translate to New York City being more vulnerable, “These earthquakes are not communicating with each other, they are too far apart,” said Armbruster in an interview with PIX 11 News on Wednesday.
What would a magnitude 6.0 earthquake inflict upon the city?
“We know that its unlikely because it hasn’t happened in the last 300 years but the earthquake that struck Fukushima Japan was the 1000 year earthquake and they weren’t ready for the that.

Tuesday, November 22, 2022

A Closer Look At The Sixth Seal (Revelation 6:12)

  

A Look at the Tri-State’s Active Fault Line

Monday, March 14, 2011
By Bob Hennelly
The Ramapo Fault is the longest fault in the Northeast that occasionally makes local headlines when minor tremors cause rock the Tri-State region. It begins in Pennsylvania, crosses the Delaware River and continues through Hunterdon, Somerset, Morris, Passaic and Bergen counties before crossing the Hudson River near Indian Point nuclear facility.
In the past, it has generated occasional activity that generated a 2.6 magnitude quake in New Jersey’s Peakpack/Gladstone area and 3.0 magnitude quake in Mendham.
But the New Jersey-New York region is relatively seismically stable according to Dr. Dave Robinson, Professor of Geography at Rutgers. Although it does have activity.
„There is occasional seismic activity in New Jersey,“ said Robinson. „There have been a few quakes locally that have been felt and done a little bit of damage over the time since colonial settlement — some chimneys knocked down in Manhattan with a quake back in the 18th century, but nothing of a significant magnitude.“
Robinson said the Ramapo has on occasion registered a measurable quake but has not caused damage: „The Ramapo fault is associated with geological activities back 200 million years ago, but it’s still a little creaky now and again,“ he said.
„More recently, in the 1970s and early 1980s, earthquake risk along the Ramapo Fault received attention because of its proximity to Indian Point,“ according to the New Jersey Geological Survey website.
Historically, critics of the Indian Point Nuclear facility in Westchester County, New York, did cite its proximity to the Ramapo fault line as a significant risk.
In 1884, according to the New Jersey Geological Survey website, the  Rampao Fault was blamed for a 5.5 quake that toppled chimneys in New York City and New Jersey that was felt from Maine to Virginia.
„Subsequent investigations have shown the 1884 Earthquake epicenter was actually located in Brooklyn, New York, at least 25 miles from the Ramapo Fault,“ according to the New Jersey Geological Survey website.

Monday, November 21, 2022

East Coast Quakes and the Sixth Seal: Revelation 6

          

Items lie on the floor of a grocery store after an earthquake on Sunday, August 9, 2020 in North Carolina.

East Coast Quakes: What to Know About the Tremors Below

By Meteorologist Dominic Ramunni Nationwide PUBLISHED 7:13 PM ET Aug. 11, 2020 PUBLISHED 7:13 PM EDT Aug. 11, 2020

People across the Carolinas and Mid-Atlantic were shaken, literally, on a Sunday morning as a magnitude 5.1 earthquake struck in North Carolina on August 9, 2020.

Centered in Sparta, NC, the tremor knocked groceries off shelves and left many wondering just when the next big one could strike.

Fault Lines

Compared to the West Coast, there are far fewer fault lines in the East. This is why earthquakes in the East are relatively uncommon and weaker in magnitude.

That said, earthquakes still occur in the East.

According to Spectrum News Meteorologist Matthew East, “Earthquakes have occurred in every eastern U.S. state, and a majority of states have recorded damaging earthquakes. However, they are pretty rare. For instance, the Sparta earthquake Sunday was the strongest in North Carolina in over 100 years.”

While nowhere near to the extent of the West Coast, damaging earthquakes can and do affect much of the eastern half of the country.

For example, across the Tennesse River Valley lies the New Madrid Fault Line. While much smaller in size than those found farther west, the fault has managed to produce several earthquakes over magnitude 7.0 in the last couple hundred years.

In 1886, an estimated magnitude 7.0 struck Charleston, South Carolina along a previously unknown seismic zone. Nearly the entire town had to be rebuilt.

Vulnerabilities

The eastern half of the U.S. has its own set of vulnerabilities from earthquakes.

Seismic waves actually travel farther in the East as opposed to the West Coast. This is because the rocks that make up the East are tens, if not hundreds, of millions of years older than in the West.

These older rocks have had much more time to bond together with other rocks under the tremendous pressure of Earth’s crust. This allows seismic energy to transfer between rocks more efficiently during an earthquake, causing the shaking to be felt much further.

This is why, during the latest quake in North Carolina, impacts were felt not just across the state, but reports of shaking came as far as Atlanta, Georgia, nearly 300 miles away.

Reports of shaking from different earthquakes of similar magnitude.

Quakes in the East can also be more damaging to infrastructure than in the West. This is generally due to the older buildings found east. Architects in the early-to-mid 1900s simply were not accounting for earthquakes in their designs for cities along the East Coast.

When a magnitude 5.8 earthquake struck Virginia in 2011, not only were numerous historical monuments in Washington, D.C. damaged, shaking was reported up and down the East Coast with tremors even reported in Canada.

Unpredictable

There is no way to accurately predict when or where an earthquake may strike.

Some quakes will have a smaller earthquake precede the primary one. This is called a foreshock.

The problem is though, it’s difficult to say whether the foreshock is in fact a foreshock and not the primary earthquake. Only time will tell the difference.

The United State Geological Survey (USGS) is experimenting with early warning detection systems in the West Coast.

While this system cannot predict earthquakes before they occur, they can provide warning up to tens of seconds in advance that shaking is imminent. This could provide just enough time to find a secure location before the tremors begin.

Much like hurricanes, tornadoes, or snowstorms, earthquakes are a natural occuring phenomenon that we can prepare for.

The USGS provides an abundance of resources on how to best stay safe when the earth starts to quake.

Sunday, November 20, 2022

The Sixth Seal Is Long Overdue (Revelation 6:12)

        


By MARGO NASH
Published: March 25, 2001
Alexander Gates, a geology professor at Rutgers-Newark, is co-author of ”The Encyclopedia of Earthquakes and Volcanoes,” which will be published by Facts on File in July. He has been leading a four-year effort to remap an area known as the Sloatsburg Quadrangle, a 5-by-7-mile tract near Mahwah that crosses into New York State. The Ramapo Fault, which runs through it, was responsible for a big earthquake in 1884, and Dr. Gates warns that a recurrence is overdue. He recently talked about his findings.
Q. What have you found?
A. We’re basically looking at a lot more rock, and we’re looking at the fracturing and jointing in the bedrock and putting it on the maps. Any break in the rock is a fracture. If it has movement, then it’s a fault. There are a lot of faults that are offshoots of the Ramapo. Basically when there are faults, it means you had an earthquake that made it. So there was a lot of earthquake activity to produce these features. We are basically not in a period of earthquake activity along the Ramapo Fault now, but we can see that about six or seven times in history, about 250 million years ago, it had major earthquake activity. And because it’s such a fundamental zone of weakness, anytime anything happens, the Ramapo Fault goes.
Q. Where is the Ramapo Fault?
 A. The fault line is in western New Jersey and goes through a good chunk of the state, all the way down to Flemington. It goes right along where they put in the new 287. It continues northeast across the Hudson River right under the Indian Point power plant up into Westchester County. There are a lot of earthquakes rumbling around it every year, but not a big one for a while.
Q. Did you find anything that surprised you?
A. I found a lot of faults, splays that offshoot from the Ramapo that go 5 to 10 miles away from the fault. I have looked at the Ramapo Fault in other places too. I have seen splays 5 to 10 miles up into the Hudson Highlands. And you can see them right along the roadsides on 287. There’s been a lot of damage to those rocks, and obviously it was produced by fault activities. All of these faults have earthquake potential.
Q. Describe the 1884 earthquake.
A. It was in the northern part of the state near the Sloatsburg area. They didn’t have precise ways of describing the location then. There was lots of damage. Chimneys toppled over. But in 1884, it was a farming community, and there were not many people to be injured. Nobody appears to have written an account of the numbers who were injured.
Q. What lessons we can learn from previous earthquakes?
A. In 1960, the city of Agadir in Morocco had a 6.2 earthquake that killed 12,000 people, a third of the population, and injured a third more. I think it was because the city was unprepared.There had been an earthquake in the area 200 years before. But people discounted the possibility of a recurrence. Here in New Jersey, we should not make the same mistake. We should not forget that we had a 5.4 earthquake 117 years ago. The recurrence interval for an earthquake of that magnitude is every 50 years, and we are overdue. The Agadir was a 6.2, and a 5.4 to a 6.2 isn’t that big a jump.
Q. What are the dangers of a quake that size?
A. When you’re in a flat area in a wooden house it’s obviously not as dangerous, although it could cut off a gas line that could explode. There’s a real problem with infrastructure that is crumbling, like the bridges with crumbling cement.There’s a real danger we could wind up with our water supplies and electricity cut off if a sizable earthquake goes off. The best thing is to have regular upkeep and keep up new building codes. The new buildings will be O.K. But there is a sense of complacency.
MARGO NASH

Saturday, November 19, 2022

USGS Evidence Shows Power of the Sixth Seal (Revelation 6:12)

           


New Evidence Shows Power of East Coast Earthquakes
Virginia Earthquake Triggered Landslides at Great Distances
Released: 11/6/2012 8:30:00 AM USGS.gov
Earthquake shaking in the eastern United States can travel much farther and cause damage over larger areas than previously thought.
“We used landslides as an example and direct physical evidence to see how far-reaching shaking from east coast earthquakes could be,” said Randall Jibson, USGS scientist and lead author of this study. “Not every earthquake will trigger landslides, but we can use landslide distributions to estimate characteristics of earthquake energy and how far regional ground shaking could occur.”
“Scientists are confirming with empirical data what more than 50 million people in the eastern U.S. experienced firsthand: this was one powerful earthquake,” said USGS Director Marcia McNutt. “Calibrating the distance over which landslides occur may also help us reach back into the geologic record to look for evidence of past history of major earthquakes from the Virginia seismic zone.”
This study will help inform earthquake hazard and risk assessments as well as emergency preparedness, whether for landslides or other earthquake effects.
The research is being presented today at the Geological Society of America conference, and will be published in the December 2012 issue of the Bulletin of the Seismological Society of America.
The USGS found that the farthest landslide from the 2011 Virginia earthquake was 245 km (150 miles) from the epicenter. This is by far the greatest landslide distance recorded from any other earthquake of similar magnitude. Previous studies of worldwide earthquakes indicated that landslides occurred no farther than 60 km (36 miles) from the epicenter of a magnitude 5.8 earthquake.
“What makes this new study so unique is that it provides direct observational evidence from the largest earthquake to occur in more than 100 years in the eastern U.S,” said Jibson. “Now that we know more about the power of East Coast earthquakes, equations that predict ground shaking might need to be revised.”
It is estimated that approximately one-third of the U.S. population could have felt last year’s earthquake in Virginia, more than any earthquake in U.S. history. About 148,000 people reported their ground-shaking experiences caused by the earthquake on the USGS “Did You Feel It?” website. Shaking reports came from southeastern Canada to Florida and as far west as Texas.
In addition to the great landslide distances recorded, the landslides from the 2011 Virginia earthquake occurred in an area 20 times larger than expected from studies of worldwide earthquakes. Scientists plotted the landslide locations that were farthest out and then calculated the area enclosed by those landslides. The observed landslides from last year’s Virginia earthquake enclose an area of about 33,400 km2, while previous studies indicated an expected area of about 1,500 km2from an earthquake of similar magnitude.
“The landslide distances from last year’s Virginia earthquake are remarkable compared to historical landslides across the world and represent the largest distance limit ever recorded,” said Edwin Harp, USGS scientist and co-author of this study. “There are limitations to our research, but the bottom line is that we now have a better understanding of the power of East Coast earthquakes and potential damage scenarios.”
Learn more about the 2011 central Virginia earthquake.

Friday, November 18, 2022

A Closer Look At The Sixth Seal (Revelation 6:12)

      


A Look at the Tri-State’s Active Fault Line

Monday, March 14, 2011
The Ramapo Fault is the longest fault in the Northeast that occasionally makes local headlines when minor tremors cause rock the Tri-State region. It begins in Pennsylvania, crosses the Delaware River and continues through Hunterdon, Somerset, Morris, Passaic and Bergen counties before crossing the Hudson River near Indian Point nuclear facility.
In the past, it has generated occasional activity that generated a 2.6 magnitude quake in New Jersey’s Peakpack/Gladstone area and 3.0 magnitude quake in Mendham.
“There is occasional seismic activity in New Jersey,” said Robinson. “There have been a few quakes locally that have been felt and done a little bit of damage over the time since colonial settlement — some chimneys knocked down in Manhattan with a quake back in the 18th century, but nothing of a significant magnitude.”
Robinson said the Ramapo has on occasion registered a measurable quake but has not caused damage: “The Ramapo fault is associated with geological activities back 200 million years ago, but it’s still a little creaky now and again,” he said.
“More recently, in the 1970s and early 1980s, earthquake risk along the Ramapo Fault received attention because of its proximity to Indian Point,” according to the New Jersey Geological Survey website.
Historically, critics of the Indian Point Nuclear facility in Westchester County, New York, did cite its proximity to the Ramapo fault line as a significant risk.
“Subsequent investigations have shown the 1884 Earthquake epicenter was actually located in Brooklyn, New York, at least 25 miles from the Ramapo Fault,” according to the New Jersey Geological Survey website.

Thursday, November 17, 2022

Quakes remind us of the Sixth Seal: Revelation 6

  

EDITORIAL: Quakes remind S.C. of history, potential threat

The Times and Democrat

As 2021 ended and 2022 began, a series of minor earthquakes affected South Carolina’s Midlands.

Elgin, a community of fewer than 2,000 residents near the border of Richland and Kershaw counties, has been the epicenter of the seismic activity, starting with a 3.3-magnitude earthquake on Dec. 27. That quake clattered glass windows and doors in their frames, sounding like a heavy piece of construction equipment or concrete truck rumbling down the road.

In January, more earthquakes have been recorded nearby, ranging from 1.5 to a 2.6 in magnitude. No injury or damage was reported.

Now it’s May – and the quakes are back.

In the early hours of May 9, a 3.3 magnitude earthquake shook the ground in Elgin. The earthquake was followed by two back-to-back earthquakes an hour later registering 1.6 and 1.8 magnitudes.

The three quakes pushed South Carolina’s 2022 earthquake tally to 23, with 19 happening within 35 miles of Columbia. Historically, 70% of earthquakes in the state happen along the Coastal Plain, but because the state isn’t considered a hot spot for earthquake activity, the recent midstate quakes are a bit of a mystery.

According to the South Carolina Emergency Management Division, the state typically averages up to 20 quakes each year. Clusters often happen, like six small earthquakes in just more than a week in 2021 near Jenkinsville, about 38 miles west of the most recent group of tremors.

Though quakes are nothing new to South Carolina, many people in the state are not affected. According to emergency management officials, about 70% of South Carolina earthquakes are located in the Middleton Place-Summerville Seismic Zone, about 12.4 miles (20 kilometers) northwest of Charleston.

Every year South Carolina has a week devoted to earthquake preparedness. And there is good reason for awareness.

Aug. 31, 2021, was the 135th anniversary of the largest earthquake to occur in the eastern U.S. In the late evening on that day in 1886, a magnitude 7 earthquake struck near Charleston, causing the loss of more than 100 lives. Many buildings collapsed or were heavily damaged, with economic losses estimated at more than $100 million in today’s dollars.

The quake was felt throughout much of the eastern and central U.S., with people reporting feeling it as far north as New York and as far west as Illinois and Missouri.

In 1999, retired T&D Publisher Dean B. Livingston wrote about what is recorded locally about that “unscheduled” occurrence that had a lot of people singing “Nearer My God To Thee.”

“The area was pounded for a week by quake shocks from four to 12 times a day. The Times and Democrat wrote of the earth’s rumblings: ‘This earthquake frightened many of the inhabitants into deep religious complex, such as was never known before, bringing about a great religious revival in the churches. …’

“One person wrote that ‘many thought the end of the world had come.’ Some terror-stricken citizens in Rowesville ‘ran to and fro exclaiming: ‘The great Judgment Day is at hand. Lord have mercy on me.” A T&D article noted that ‘many people prayed during the past two weeks who never prayed before.’

“A Sawyerdale citizen reported that ‘the flood of accessions to our various churches is almost unparalleled.’

“Residents of the city of Orangeburg were awakened when the first jolt hit. People in brick homes could hear the bricks ‘grinding together as the forces of the shocks increased.’ Many people complained of a nauseous sensation. Chimneys were shaken down, the Baptist church steeple was damaged and for several nights many families slept in the open, under sheds or in small buildings.

“As late as Oct. 14, The T&D reported that ‘shocks have become so common now that people soon throw off the peculiar feeling that they inspire, and go along as if nothing unusual had occurred. There is no telling when they (shocks) will end. …’

“Over in Vance, the quake was described as a ‘sound, a deep, muffled sound … resembling the distant thunder … the earth was one tremendous oscillation. Buildings creaked … poultry squawked, dogs howled, birds chirped; in fact, everything was completely aroused and powerfully demoralized … from 10 to 11 p.m., nine successive shocks were felt.’

“Two Orangeburg men were fishing on the Edisto River when the first big shock hit. They said the first noise sounded like a loud clap of thunder. ‘This was followed by the usual rumbling which was also very loud and deep. The course of the shake was distinctly marked by the falling of the berries and acorns from the trees as it passed.”

While they have no stories comparable to 1886, people of The T&D Region periodically experience tremors. With a large fault in the earth extending from Charleston into the region, when another major quake will come is unpredictable — but practically certain.

Wednesday, November 16, 2022

Indian Point’s Final Days Before the Sixth Seal (Revelation 6:12)

           

Earth Matters: Indian Point’s Final Days – Nyack News and Views
by Barbara Puff
Indian Point has been the crown jewel of the nuclear industrialist complex and closing it is a big step to a sustainable energy future. — Susan Shapiro, environmental lawyer.
When scientists began exploring nuclear power in the 1950s, pollsters didn’t ask the public their opinion as support was almost unanimous. By the ’60s, there had been a few protests and opposition increased to 25%. So when Indian Point opened on September 16, 1962, it was greeted with enthusiasm, fanfare, and, in hindsight, naivete.
Within a few years, increased pollution, loss of wildlife, and accidents at the plant elicited concern. In response, Hudson River Sloop Clearwater and Riverkeeper were formed in 1966. After incidents at Three Mile Island in 1979 and Chernobyl in 1986, public opinion began to turn against the use of nuclear power.
In 1984, her first year as a legislator, Harriet Cornell formed the Citizens Commission to Close Indian Plant. A glance at her press releases over the years shows her convictions regarding closing the plant. In a recent speech she noted: “Were it not for the superhuman efforts of concerned individuals and dedicated scientific and environmental organizations focusing attention on the dangers posed by Indian Point, who knows what might have happened during the last 40+ years.”
Simultaneously Riverkeeper began documenting incidents, including:
1 An antiquated water-cooling system killed over a billion fish and fish larvae annually.
2 Pools holding spent nuclear fuel leaked toxic, radioactive water into the ground, soil, and Hudson River.
3 Recurring emergency shut-downs.
4 27% of the baffle bolts in Unit 2 and 31% in Unit 3, holding the reactor core together, were damaged.
5 The plant was vulnerable to terrorist attack.
6 Evacuation plans were implausible.
7 No solution for spent nuclear fuel, posing the risk of radioactive release and contamination of land.
8 The plant was near two seismic zones, suggesting an earthquake over 6.2 could devastate the area.
9 Asbestos exposure.
These and other issues led the Nuclear Regulatory Commission to rate Indian Point in 2000 as the most trouble-plagued plant in the country. Lamont-Doherty Observatory agreed, calling it the most dangerous plant in the nation.
As individuals realized the seriousness of the situation, urgency for a solution grew and Indian Point Safe Energy Coalition was formed in 2001. Comprised of public interest, health advocates, environmental and citizen groups, their goals were to educate the public, pass legislation, and form a grassroots campaign with hundreds of local, state, and federal officials.
Clearwater also began monitoring the plant around that time. Manna Jo Greene, Environmental Action Director, recalls, “We were concerned when one of the planes that struck the WTC flew over the plant, including several buildings that hold huge fuel pools, filled with spent fuel rods and radioactive waste.” Had anything happened, the nuclear power industry had provided protection for themselves while neglecting surrounding communities. Powerful lobbyists, backed by considerable financing, induced Congress to pass the Price-Anderson Act in 1957. This legislation protected nuclear power plant companies from full liability in the event of an accident, natural disaster or terrorist attack.
With such warnings, it’s hard to believe as late as 2010, The New York Times stated, “No one should be hoping for a too hasty shutdown.” Over time, the cost of litigation by New York State proved more fatal to the continuance of plant operations than protests, though they were a crucial factor and led to initial filings. Attorney General Schneiderman was very active in filing contentions, legal reasons the plant shouldn’t be relicensed, and won several important court cases on high-level radioactive storage.
In 2016, The New York State Department of Environmental Conservation denied Entergy a discharge permit for hot water into the Hudson River, part of their once-through cooling system. This permit was necessary for continued operation of the plant and a requirement for relicensing. The New York State Department of State, Bureau of Coastal Management, denied Entergy a water quality certificate the same year, which it also needed to relicense. After more than four decades of danger to the environment and residents, Governor Cuomo announced in January 2017 the plant would finally be closing. Unit 2 would cease production on April 30, 2020 and Unit 3 would end productivity on April 30, 2021.
Later that year, in March 2017, the Atomic Safety and Licensing Board allowed Entergy to renew the plant’s licenses until 2021, dismissing final points of contention between the company, New York State, and Riverkeeper. Westchester County Executive Rob Astorino attempted to sue the state and reopen the plant in April 2017 but failed.
Ellen Jaffee, NYS Assemblywoman, stated, “After 46 years of operation, I am glad to finally see the closure of Indian Point. Since joining the Assembly, I have long fought for its closure. I would not have been able to pursue these efforts if not for the environmental advocates, like the Riverkeeper, who fought long and hard beside myself to close the plant. The plant’s closure must be conducted in a safe manner, where all radioactive materials will be properly disposed of, without inflicting further harm on our environment. The closure of Indian Point shows that we can reduce our impact on the environment.”
Harriet Cornell said, “We have waited years for this to happen and frankly, it can’t happen soon enough. The facts have long shown there is no future for this dangerous plant.”
“The closure of Indian Point marks the shutdown of dirty polluting energy,” noted Susan Shapiro.
Holtec, the company chosen to oversee decommissioning of the plant, has a horrific track record. New York State Attorney General Tish James released a statement in January expressing multiple grave concerns about them. According to Riverkeeper, they have a scandalous corporate past, little experience in decommissioning, dubious skills in spent fuel management, workplace safety infractions, and health violations. Another fear is the cost will exceed a decommissioning fund set aside by Entergy, Holtec will declare bankruptcy, and the public will absorb the difference.
“Entergy made huge profits from Indian Point,” said Manna Jo Greene. “They’ve hired Holtec, a company with a poor record of decommissioning, to complete the work. Entergy plans to declare bankruptcy, thereby having taxpayers foot the bill. We are not out of danger. It is a different danger.”
Richard Webster, Legal Program Director at Riverkeeper, adds, “Decommissioning must be done promptly, safely and reliably. Selling to Holtec is the worst possible option, because it has a dubious history of bribes, lies, and risk taking, very limited experience in decommissioning, is proposing to raid the decommissioning fund for its own benefit, and is proposing leaving contaminated groundwater to run into the Hudson River.”
State Senator David Carlucci warned, “The NRC Inspector General Report shows there is much to be done by the NRC to gain the confidence of myself and the public, as the commission is charged with overseeing the decommissioning of Indian Point and ensuring the health and safety of Hudson Valley Communities. We demand answers from NRC Chairman Kristine Svinicki. The Chairman needs to come to the Hudson Valley immediately and outline the steps being taken to address our safety and explain how the commission will properly inspect and guard the pipeline near Indian Point moving forward.”
One of the gravest dangers in decommissioning is the storage of spent fuel rods. A fuel rod is a long, zirconium tube containing pellets of uranium, a fissionable material which provides fuel for nuclear reactors. Fuel rods are assembled into bundles called fuel assemblies, which are loaded individually into a reactor core. Fuel rods last about six years. When they’re spent and removed they are placed in wet storage, or pools of water, which is circulated to reduce temperature and provide shielding from radiation. They remain in these pools for 10 years, as they are too hot to be placed in dry storage, or canisters. Even in dry storage, though, they remain extremely radioactive, with high levels of plutonium, which is toxic, and continue to generate heat for decades and remain radioactive for 10,000 years.
“Elected officials and government groups became involved once they understood the fatal environmental dangers nuclear energy creates for millenium,” said Susan Shapiro. “It is the only energy that produces waste so dangerous that governments must own and dispose of it.”
Robert Kennedy, Jr., of Waterkeeper, explained “If those spent fuel rods caught on fire, if the water dropped, the zirconium coatings of the spent fuel rods would combust. You would release 37 times the amount of radiation that was released at Chernobyl. Around Chernobyl there are 100 miles that are permanently uninhabitable. I would include the workplaces, homes of 20 million Americans, including the Financial District. There’s no evacuation plan. And it’s sitting on two of the biggest earthquake faults in the northeast.”
On April 24, 2020, Beyond Indian Point Campaign was launched to advocate for a safe transition during decommissioning. Sponsored by AGREE, Frack Action, Riverkeeper, NIRS and Food and Water Watch, they’re demanding Cuomo hire another company, opposing a license transfer before the State Public Service Commission and NRC and pushing state legislation to establish a board to supervise the decommissioning fund. When decommissioning is finished Beyond Indian Point hopes to further assist the community in the transition to renewable energy. These include wind, solar, geothermal, biomass and hydrothermal power. Sign an online petition on their website to support their work, future generations and earth at BeyondIndianPoint.com, Facebook, or Twitter.
“Bravo to everyone involved in making this historic day come to pass,” said Susan Shapiro.
Raised in the Midwest, Barbara Puff is a writer who lives in Nyack, NY.

Tuesday, November 15, 2022

The Quakes Preceding the Sixth Seal: Revelation 6:12

            

East Coast Quakes: What to Know About the Tremors Below

By Meteorologist Dominic Ramunni Nationwide PUBLISHED 7:13 PM ET Aug. 11, 2020 PUBLISHED 7:13 PM EDT Aug. 11, 2020

People across the Carolinas and Mid-Atlantic were shaken, literally, on a Sunday morning as a magnitude 5.1 earthquake struck in North Carolina on August 9, 2020.

Centered in Sparta, NC, the tremor knocked groceries off shelves and left many wondering just when the next big one could strike.

Items lie on the floor of a grocery store after an earthquake on Sunday, August 9, 2020 in North Carolina.

Fault Lines

Compared to the West Coast, there are far fewer fault lines in the East. This is why earthquakes in the East are relatively uncommon and weaker in magnitude.

That said, earthquakes still occur in the East.

According to Spectrum News Meteorologist Matthew East, “Earthquakes have occurred in every eastern U.S. state, and a majority of states have recorded damaging earthquakes. However, they are pretty rare. For instance, the Sparta earthquake Sunday was the strongest in North Carolina in over 100 years.”

While nowhere near to the extent of the West Coast, damaging earthquakes can and do affect much of the eastern half of the country.

For example, across the Tennesse River Valley lies the New Madrid Fault Line. While much smaller in size than those found farther west, the fault has managed to produce several earthquakes over magnitude 7.0 in the last couple hundred years.

In 1886, an estimated magnitude 7.0 struck Charleston, South Carolina along a previously unknown seismic zone. Nearly the entire town had to be rebuilt.

Vulnerabilities

The eastern half of the U.S. has its own set of vulnerabilities from earthquakes.

Seismic waves actually travel farther in the East as opposed to the West Coast. This is because the rocks that make up the East are tens, if not hundreds, of millions of years older than in the West.

These older rocks have had much more time to bond together with other rocks under the tremendous pressure of Earth’s crust. This allows seismic energy to transfer between rocks more efficiently during an earthquake, causing the shaking to be felt much further.

This is why, during the latest quake in North Carolina, impacts were felt not just across the state, but reports of shaking came as far as Atlanta, Georgia, nearly 300 miles away.

Reports of shaking from different earthquakes of similar magnitude.

Quakes in the East can also be more damaging to infrastructure than in the West. This is generally due to the older buildings found east. Architects in the early-to-mid 1900s simply were not accounting for earthquakes in their designs for cities along the East Coast.

When a magnitude 5.8 earthquake struck Virginia in 2011, not only were numerous historical monuments in Washington, D.C. damaged, shaking was reported up and down the East Coast with tremors even reported in Canada.

Unpredictable

There is no way to accurately predict when or where an earthquake may strike.

Some quakes will have a smaller earthquake precede the primary one. This is called a foreshock.

The problem is though, it’s difficult to say whether the foreshock is in fact a foreshock and not the primary earthquake. Only time will tell the difference.

The United State Geological Survey (USGS) is experimenting with early warning detection systems in the West Coast.

While this system cannot predict earthquakes before they occur, they can provide warning up to tens of seconds in advance that shaking is imminent. This could provide just enough time to find a secure location before the tremors begin.

Much like hurricanes, tornadoes, or snowstorms, earthquakes are a natural occuring phenomenon that we can prepare for.

The USGS provides an abundance of resources on how to best stay safe when the earth starts to quake.